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Abstract. We estimate future area burned in the Alaskan

and Canadian forest by the mid-century (2046–2065) based

on the simulated meteorology from 13 climate models un-

der the A1B scenario. We develop ecoregion-dependent re-

gressions using observed relationships between annual to-

tal area burned and a suite of meteorological variables and

fire weather indices, and apply these regressions to the sim-

ulated meteorology. We find that for Alaska and western

Canada, almost all models predict significant (p < 0.05) in-

creases in area burned at the mid-century, with median val-

ues ranging from 150 to 390 %, depending on the ecoregion.

Such changes are attributed to the higher surface air temper-

atures and 500 hPa geopotential heights relative to present

day, which together lead to favorable conditions for wildfire

spread. Elsewhere the model predictions are not as robust.

For the central and southern Canadian ecoregions, the mod-

els predict increases in area burned of 45–90 %. Except for

the Taiga Plain, where area burned decreases by 50 %, no

robust trends are found in northern Canada, due to the com-

peting effects of hotter weather and wetter conditions there.

Using the GEOS-Chem chemical transport model, we find

that changes in wildfire emissions alone increase mean sum-

mertime surface ozone levels by 5 ppbv for Alaska, 3 ppbv

for Canada, and 1 ppbv for the western US by the mid-

century. In the northwestern US states, local wildfire emis-

sions at the mid-century enhance surface ozone by an av-

erage of 1 ppbv, while transport of boreal fire pollution fur-

ther degrades ozone air quality by an additional 0.5 ppbv. The

projected changes in wildfire activity increase daily summer-

time surface ozone above the 95th percentile by 1 ppbv in the

northwestern US, 5 ppbv in the high latitudes of Canada, and

15 ppbv in Alaska, suggesting a greater frequency of pollu-

tion episodes in the future atmosphere.

1 Introduction

North American wildfires are important sources of air pollu-

tants, such as ozone precursors carbon monoxide (CO), nitro-

gen oxides (NOx), and volatile organic compounds (VOCs).

Their emissions can strongly affect air quality locally and, in

the case of large fires, in areas thousands of kilometers down-

wind in the United States and Canada (Wotawa and Trainer,

2000; Morris et al., 2006; Kang et al., 2014), over the mid-

Atlantic (Val Martin et al., 2006; Cook et al., 2007), and in

Europe (Real et al., 2007). Previous studies have projected

increases in the area burned by North American wildfire in

the 21st century due mainly to warmer temperatures (Flan-

nigan et al., 2005; Balshi et al., 2009; Wotton et al., 2010;

Price et al., 2013; Boulanger et al., 2014), implying further

degradation of air quality by wildfire emissions in a changing

climate. However, predicted increases in future precipitation

in Alaska and Canada (Christensen et al., 2007) may have an

opposing effect on future wildfire activity, resulting in large

uncertainties in fire projections.

Wildfires in Canada and Alaska often have much larger

size compared with those in the contiguous United States

(Stocks et al., 2002; Westerling et al., 2003). Emissions from

boreal wildfires can have significant effects on air quality

over the contiguous US (Sigler et al., 2003; Miller et al.,
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2011; Kang et al., 2014). In the summer of 1995, transport

of forest fire emissions from northwestern Canada reached

as far south as the central and southern US, increasing CO

concentrations as much as 200 ppb in that region (Wotawa

and Trainer, 2000). The same fires also enhanced ozone in

the central and southern US by 10–30 ppbv, most of which

was associated with NOx directly emitted by Canadian fires

and the remainder with the oxidation of wildfire CO by lo-

cally emitted NOx (McKeen et al., 2002). The summer of

2004 was one of the most intense fire seasons on record

for Canada and Alaska (Turquety et al., 2007; Lavoue and

Stocks, 2011). An analysis of flight data over the northeast-

ern US concluded that boreal fire emissions during that sum-

mer contributed 10 % of the observed CO over the north-

ern United States (Warneke et al., 2006) and enhanced mean

summertime ozone there by 1–3 ppbv (Hudman et al., 2009).

Smoke plumes occasionally reached Houston that summer,

increasing ozone there as much as 30–90 ppbv between the

surface and 3 km altitude and likely contributing to violations

of the 8-hour ozone air quality standard (Morris et al., 2006).

Area burned in North America is influenced by fuel avail-

ability, weather, ignition, and fire suppression practices.

Many studies, however, have suggested that meteorology is

the single most important factor (Hely et al., 2001). For ex-

ample, Gillett et al. (2004) found that changes in tempera-

ture alone explain 59 % of the variance of the observed area

burned in Canada for 1920–1999. Regression studies using

surface meteorological data and fire indices also yield high

R2 of 0.4–0.6 for area burned in boreal ecoregions (Flanni-

gan et al., 2005). In addition to the surface weather condi-

tions, the 500 hPa geopotential height is also found to be im-

portant in predictions of area burned in boreal forests (Skin-

ner et al., 1999; Wendler et al., 2011), since this variable can

indicate the occurrence of blocking highs over the continent,

which cause rapid fuel drying (Fauria and Johnson, 2008).

Studies examining climate impacts on wildfire activity in

North America have projected increases in area burned over

most boreal ecoregions in the 21st century. Flannigan and

Van Wagner (1991) developed linear regressions between

area burned and fire indices. They applied these regressions

with the mean climate simulated by three general circulation

models (GCMs) and projected an increase of 40 % in Cana-

dian area burned in a doubled CO2 atmosphere, relative to

present day. Flannigan et al. (2005) improved the previous

projection with more complete meteorological station data,

higher spatial resolution, and a stepwise regression scheme

with more potential regression factors. Their results showed

that area burned increases by 70–120 % in boreal ecoregions

by 2080 to -2100, a period with roughly tripled atmospheric

CO2 concentrations in the scenario used. However, Balshi et

al. (2009) predicted that area burned in Alaska and Canada

would double by 2050, a rate more rapid than in the projec-

tions by Flannigan et al. (2005). The discrepancies among

these studies arise in part from the differences in the climate

scenarios as well as the sensitivity of the particular GCMs to

increases in greenhouse gases.

In this study, we investigate the impact of changing cli-

mate on future Alaskan and Canadian area burned and the

consequences for ozone air quality in North America by

2046–2065 under a moderately warming scenario. Wildfires

produce abundant ozone precursors, and many, but certainly

not all, observational studies of boreal fires suggest subse-

quent ozone generation either locally or downwind (Jaffe and

Wigder, 2012). We build here on our earlier study (Yue et

al., 2013), which projected future area burned in the west-

ern US using stepwise regressions and the simulated climate

from an ensemble of climate models from the World Cli-

mate Research Programme’s (WCRP’s) Coupled Model In-

tercomparison Project phase 3 (CMIP3) multi-model data set

(Meehl et al., 2007a). Yue et al. (2013) predicted that the

warmer and drier summer climate over the western US at the

mid-century would increase area burned there by 60 % and

the consequent biomass burned by 77 %. Yue et al. (2013)

further calculated regional increases of 46–70 % in surface

organic carbon aerosol and 20–27 % in black carbon aerosol

due to the increased fire emissions. For this study, we fo-

cus on ozone air quality. We rely on the CMIP3 ensemble of

climate models to obtain confidence in projections of boreal

area burned, and we combine these results with those of Yue

et al. (2013) for the western US. Using the estimated fuel

consumption and emission factors for ozone precursors, we

calculate future fire emissions over North America. Finally,

we quantify the impacts of those emissions on ozone mixing

ratios at the mid-century, using the GEOS-Chem chemical

transport model (CTM) driven by the Goddard Institute for

Space Studies general circulation model 3 (GISS GCM3).

2 Data and methods

2.1 Boreal ecoregions

We divide Alaskan and Canadian forests into 12 ecoregions

(Fig. 1), following the definitions of the Ecological Stratifica-

tion Working Group (1996) with modifications by Stocks et

al. (2002) and Flannigan et al. (2005). Area burned outside

these ecoregions is small. In northern Canada cold weather

and the lack of fuel continuity for the tundra and mountain-

ous regions limits fire activity (Stocks et al., 2002), while

regulations restrict agricultural burning in the southern part

of central Canada.

We describe the 12 ecoregions as follows. Located in cen-

tral Alaska, the Alaska Boreal Interior consists mainly of

plains and hills and is covered with Arctic shrubs and open

coniferous forest. The Taiga Cordillera in western Canada

has similar vegetation, although the higher elevation leads

to lower temperatures. Three western ecoregions, the Alaska

Boreal Cordillera, the Canadian Boreal Cordillera, and the

Western Cordillera are located along the Rocky Mountains.
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Alaska Boreal Interior (ABI)

Alaska Boreal Cordillera (ABC)

Taiga Cordillera (TC)

Canadian Boreal Cordillera (CBC)

Western Cordillera (WC)
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Boreal Plain (BP)
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Western Mixed Wood Shield (WS)

Eastern Mixed Wood Shield (ES)

Figure 1. Distribution of the 12 ecoregions used for this study. The

black triangle symbols indicate the GSOD meteorological data sites

in Alaskan and Canadian ecoregions.

The high elevation causes abundant precipitation, especially

for the Western Cordillera, resulting in dense forests. In con-

trast, the two central Canadian ecoregions, the Taiga and Bo-

real Plains, are at lower altitudes and are characterized by

tundra meadow and aspen forest. The Western Taiga Shield

is a plain in north central Canada characterized by shrub and

conifer forests. The Hudson Plain, to the south of Hudson

Bay, is dominated by wetlands. Stocks et al. (2002) defined

the Eastern Taiga Shield as covering most of northern Que-

bec. Here we redefine this ecoregion so that it covers just

the southwestern part, where ∼ 90 % of the area burned in

the original ecoregion occurs. We divide the Mixed Wood

Shield, a large ecoregion in southeast Canada, into eastern

and western parts. Fire activity in these two subregions is

significantly different (Flannigan et al., 2005).

2.2 Fire data

We compile monthly 1◦× 1◦ area burned from 1980 to

2009 based on interagency fire reports. For Alaska, we

use incidence reports managed by the National Wildfire

Coordinating Group from the Fire and Aviation Manage-

ment Web Applications (FAMWEB, http://fam.nwcg.gov/

fam-web/weatherfirecd/, downloaded on 5 June 2012). Five

agencies, the US Forest Service (USFS), Bureau of Land

Management (BLM), Bureau of Indian Affairs (BIA), Fish

and Wildlife Service (FWS), and National Park Service

(NPS), provide ∼ 5000 records of fire incidence in Alaska

between 1980 and 2009. Each record documents the name,

location (latitude and longitude), start and end time, igni-

tion source (lightning or human) and area burned of an in-

dividual fire. The minimum area burned is 1 ha and the max-

imum is 2.5× 105 ha for the Inowak Fire, which began on

25 June 1997. Duplicates are expected because fires burn

in lands managed by different agencies (Kasischke et al.,

2011). We identify and delete duplicate records if two or

more fires have same names and areas, and occur within

a distance of 50 km on the same day. Thus we obtain a

corrected subset and compare it with the annual fire report

from the National Interagency Coordination Center (NICC,

http://www.nifc.gov/nicc/). NICC manages fire reports from

federal agencies, states, and private ownership, and so has

more complete data sets relative to FAMWEB. NICC, how-

ever, provides annual total area burned only back to 1994.

The correlation R between FAMWEB and NICC is 1.0 and

the differences are within 2 % for 1994–2009, giving us con-

fidence in our compilation of FAMWEB area burned.

For Canada, we use fire point data from the Cana-

dian National Fire Database (CNFDB, http://cwfis.cfs.nrcan.

gc.ca/ha/nfdb), which is an extension of the Large Fire

Database (LFDB) summarized in Stocks et al. (2002). The

database provides over 210 000 records of forest fires during

1980–2009, collected from provinces, territories, and Parks

Canada. Each CNFDB record includes the name, location,

size, and time of one fire. The minimum area burned is 0.1 ha

and the maximum is 6.2× 105 ha for a fire that began on 12

July 1981. Duplicates in CNFDB are much fewer, possibly

because the redundant records were deleted when the data

set was compiled into a geographic information system. Al-

though the total number of fires is immense, only about 5 %

are greater than 100 ha. These large fires account for over

99 % in area burned in the data set, as was the case for the

LFDB.

We aggregate both the FAMWEB and CNFDB report data

onto 1◦× 1◦ grids, based on the location of fires. Area burned

is assigned to the start month, as end dates are often uncertain

(Kasischke et al., 2011). The monthly gridded area burned is

used to derive fire emissions. To develop the fire models, we

aggregate the fire report data into boreal ecoregions across

Alaska and the Canadian boreal forest (Fig. 1) and then sum

the area burned within each ecoregion for the entire fire sea-

son (May–October) to reduce noise in the regression.

2.3 Meteorological data and fire weather indices

We use daily observations for 1978–2009 from the Global

Surface Summary of the Day data set (GSOD, http://www.

ncdc.noaa.gov/). The length of meteorological data is 2 years

longer than that of fire data, because the regressions employ

terms that depend on the weather occurring up to 2 years be-

fore the area burned. The GSOD provides 18 daily surface

meteorological variables for over 2000 stations in Alaska

and Canada. We select 157 sites within the 12 ecoregions

that provide observations for at least two-thirds of the days
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during 1978–2009 (Fig. 1). We use daily mean and maxi-

mum temperature, total precipitation, and wind speed and

calculate relative humidity using daily mean temperature and

dew point temperature. We also use the 500 hPa geopoten-

tial height from the North American Regional Reanalysis

(NARR, Mesinger et al., 2006). Both the site measurements

and the NARR reanalysis data are binned into ecoregions to

derive monthly averages.

The site observations are also used as input for the Cana-

dian Fire Weather Index system (CFWIS, Van Wagner,

1987). The CFWIS uses daily temperature, relative humid-

ity, wind speed, and total precipitation to calculate three

fuel moisture codes and four fire severity indices. The fuel

moisture codes indicate moisture levels for litter fuels (Fine

Fuel Moisture Code, FFMC), loosely compacted organic lay-

ers (Duff Moisture Code, DMC), and deep organic layers

(Drought Code, DC). The FFMC is combined with wind

speed to estimate the Initial Spread Index (ISI). The DMC

and DC are used to derive the Build-up Index (BUI) to indi-

cate the availability of fuel. The ISI and BUI are then com-

bined to create the Fire Weather Index (FWI) and its expo-

nential form as the Daily Severity Rating (DSR). The CFWIS

indices have been widely used in fire-weather research over

North America (Amiro et al., 2004; Flannigan et al., 2005;

Balshi et al., 2009; Spracklen et al., 2009), and in our previ-

ous work (Yue et al., 2013).

2.4 Regression approach

We use total area burned during the fire season as the pre-

dictand, and we assume that the influences of both topogra-

phy and fuels on wildfire activity are roughly uniform across

each region. We calculate the means of five meteorological

variables (mean and maximum temperature, relative humid-

ity, precipitation, and 500 hPa geopotential height) over six

different time intervals (winter, spring, summer, autumn, an-

nual, and fire season), making 30 meteorological predictors

in all. The mean and maximum values of the seven daily

CFWIS indices during fire season are also included in the

regressions, making another 14 fire-index predictors. As a re-

sult, a total of 44 terms are generated for the current year. As

in Yue et al. (2013), we also employ all these variables from

the previous 2 years in the regression, making 132 (44× 3)

potential terms for the regression.

We set up two criteria to select a factor as a predictor at

each step. First, the chosen factor must have the maximum

contribution to the F value, a metric for variance, of the

predictand among the unselected factors. Second, this factor

must exhibit low correlation with those already selected, with

p value > 0.5. The first criterion produces a function with the

largest possible predictive capability, while the second helps

increase the stability of the function by introducing indepen-

dent predictors (Philippi, 1993). We cross validate all the re-

gressions with the leave-one-out approach following Littell

et al. (2009). We calculate the ratio of the predicted residual

sum of squares (PRESS) root mean square error (RMSE) to

the standard deviation (SD) of area burned in each ecoregion

as an indicator of the leave-one-out prediction error. A ro-

bust regression usually has an RMSE / SD ratio lower than 2

(Littell et al., 2009).

In Yue et al. (2013), we also developed a parameteriza-

tion for area burned in the western US. The parameterization

was a function of temperature, precipitation, and relative hu-

midity. The same functional form was applied throughout the

domain, scaled by an ecoregion-dependent fire potential co-

efficient. We find that the parameterization approach fails in

boreal forests, probably because the driving factors for wild-

fires vary greatly over the vast boreal areas.

2.5 CMIP3 model data

We use daily output from 13 climate models in the CMIP3

archive (Meehl et al., 2007a) for the fire projection (Table S1

in the Supplement). The variables we select include daily

mean and maximum temperature, total precipitation, and sur-

face wind speed. We calculate daily relative humidity (RH)

for the CMIP3 models using other archived meteorological

variables. We also use the monthly mean 500 hPa geopo-

tential heights from all 13 GCMs. We use the output from

the 20C3M scenario for the prediction of area burned in the

present day (1981–1999). Simulations in the CMIP3 ensem-

ble for the years beyond 1999 (or in some cases 2000) are

driven by a suite of future greenhouse gas scenarios, making

comparisons with observations difficult. For the future atmo-

sphere (2046–2064), we use the simulated climate under the

A1B scenario, which assumes a greater emphasis on non-

fossil fuels, improved energy efficiency, and reduced costs of

energy supply. CO2 reaches 522 ppm by 2050 in this scenario

(Solomon et al., 2007), resulting in a moderate warming rel-

ative to other scenarios (Meehl et al., 2007b). Over this rela-

tively short time frame, the A1B scenario is consistent with

two moderate scenarios in the newer Representative Concen-

tration Pathways, RCP 4.5 and RCP6.0 (Moss et al., 2010).

We aggregate all of the climate simulations into ecoregions

for the projection. In order to reduce model bias, we scale

the aggregated variables of both present day and future from

each GCM using the mean observations for 1980–2009 from

the GSOD sites. The changes in area burned and meteoro-

logical variables are examined with a Student t test and only

those with p < 0.05 are considered as significant.

2.6 Fuel consumption

Fuel consumption is the amount of both live and dead

biomass burned per unit area. It depends on both fuel load

and burning severity. In Yue et al. (2013), we estimated

fuel load over the western US using the 1 km data set from

the USFS Fuel Characteristic Classification System (FCCS,

http://www.fs.fed.us/pnw/fera/fccs/, McKenzie et al., 2007).

The FCCS defines ∼ 300 types of fuel bed based on the dis-
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tribution of vegetation types from the Landscape Fire and

Resource Management Planning Tools (LANDFIRE, http:

//www.landfire.gov/). Each type of fuel bed consists of seven

basic fuel classes (i.e., light, medium, heavy fuels, duff,

grass, shrub, and canopy) each with a different load (Ottmar

et al., 2007). Here, for Canada, we use the 1 km fuel type

map from the Canadian Fire Behavior Prediction (FBP) sys-

tem, which is derived from remote sensing and forest inven-

tory data and includes just 14 types (Nadeau et al., 2005). For

Alaska, we use a fuel map created by the USFS, which also

follows the classification scheme of Nadeau et al. (2005).

However, the FBP system does not provide fuel load, and so

we follow Val Martin et al. (2012), who matched the Cana-

dian FBP fuel beds with their corresponding types in the

FCCS and in this way estimated the fuel load for both Canada

and Alaska (see their Table A1).

Burning severity indicates the fraction of fuel load burned

by fires and varies by moisture state. We follow the ap-

proach of Val Martin et al. (2012), who used the USFS

CONSUME model 3.0 (Ottmar, 2009) to calculate burning

severity and the resulting fuel consumption for a given fuel

load. In this approach, the derived FBP fuel loads are ap-

plied to CONSUME, yielding reference fuel consumption

for five moisture conditions: wet, moist, moderately dry,

dry, and extra dry (Val Martin et al., 2012). Here we use

a newer model version, CONSUME-python (https://code.

google.com/p/python-consume/), which fixes some errors in

CONSUME 3.0. The updated reference fuel consumption for

different FBP fuel types and moisture states is given in Table

S2. Our values for C3 (mature jack or lodgepole pine) and

C5 (red and white pine) fuel types are 40–65 % lower than

those in Val Martin et al. (2012), likely because of errors in

the calculation of duff fuel in CONSUME 3.0. We aggregate

the new 1 km fuel consumption map to 1◦ resolution to match

that of gridded area burned. Figure 2a shows fuel consump-

tion for moderately dry conditions. The figure shows heavy

fuel consumption of > 7 kg dry matter (DM) m−2 in the Taiga

Plain and in the Western and Eastern Mixed Wood Shield,

where boreal spruce fuel types (C2) dominate.

We rely on the DC index from the CFWIS in order to as-

sign the moisture condition and determine the monthly fuel

consumption. This index is a good indicator for fuel mois-

ture content (Bourgeau-Chavez et al., 1999; Abbott et al.,

2007) and has been widely used to calculate fuel consump-

tion (e.g., de Groot et al., 2009; Kasischke and Hoy, 2012).

Higher DC values indicate greater dryness. Figure S1 in the

Supplement shows the monthly mean DC in boreal ecore-

gions for 1980–2009. The values of DC increase gradually

from May to September, as fuels become progressively drier.

The DC values in western ecoregions are usually higher than

those in eastern ones, probably because precipitation in the

West (except for the Pacific coast) is much lower relative to

that in the East (not shown).

Figure S2 in the Supplement shows the cumulative proba-

bility of daily DC in all ecoregions during the fire seasons

 
(a) Fuel consumption for moderately dry conditions (4.7)

 

 
(b) Fuel consumption weighted by DC and area burned (3.4)

 

           0 1 2 3 4 5 6 7 8 9 10 (Kg DM m-2)

Figure 2. Fuel consumption over Alaska and Canada (a) for mod-

erately dry conditions and (b) weighted by the Drought Code (DC)

and area burned for 1980–2009. The average values are shown in

brackets.

of 1980–2009. This probability distribution differs some-

what from the distributions in Amiro et al. (2004) who esti-

mated DC for Canadian wildfires larger than 2 km2 in differ-

ent ecosystems during 1959–1999. Such fires typically oc-

cur in June to August. In contrast, Fig. S2 shows the DC

distribution over the entire fire season, including days in

September and October, when DC values are usually very

high. We relate burning severity to DC by defining four ar-

bitrary thresholds in the DC probability distribution: 85, 65,

35, and 15 %. The resulting moisture categories and their av-

erage DC indices are as follows: extra dry (DC > 85 %, 774),

dry (65 % < DC ≤ 85 %, 590), moderately dry (35 % < DC

≤ 65 %, 390), moist (15 % < DC ≤ 35 %, 196), and wet (DC

≤ 15 %, 53). We then calculate the monthly fuel consumption

in each ecoregion by matching the DC in that month to these

moisture categories and choosing the appropriate fuel con-

sumption (Table S2 in the Supplement). In this way, fuel con-

sumption varies yearly and seasonally. Amiro et al. (2004)

found that the average DC for Canadian wildfires ranges

from 210 to 372 depending on the ecoregion, and the cu-

mulative probability of the DC also varies with ecoregion.

Here we have chosen to use a single distribution for the

North American boreal region to define the DC thresholds

(Fig. S2). As a check, we also compare the fuel consump-

tion derived in this way with that which is calculated based

www.atmos-chem-phys.net/15/10033/2015/ Atmos. Chem. Phys., 15, 10033–10055, 2015
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on the ecoregion-specific DC thresholds (see Table 4 and re-

lated discussion in Sect. 3.3).

We assume that the fuel load remains constant for both

present day and mid-century, based on the conclusion that

changes in forest composition will be a gradual process

(Hanson and Weltzin, 2000). Fuel consumption per unit area

burned, however, does change in our approach since it de-

pends on the moisture state. We estimate fuel consumption

for both present day and mid-century based on the multi-

model median DC in each ecoregion. As a result, the mod-

eled fuel consumption responds to trends in fuel moisture

conditions. Amiro et al. (2009) performed a similar estimate

of future boreal fuel consumption using modeled monthly

mean values of the DC and an empirical relationship derived

by de Groot et al. (2009) for forest floor fuel consumption

in experimental fires in Canada. However, this empirical re-

lationship has predictive capability only for fires set under

experimental conditions, but not for wildfires (de Groot et

al., 2009), and we do not apply it here.

2.7 Estimate of gridded fire emissions

We calculate biomass burned as the product of area burned

and fuel consumption. The annual area burned estimated

with regressions for each ecoregion (Sect. 2.4) is first con-

verted to monthly area burned using the mean seasonality for

each boreal ecoregion, on the basis of the observations for

1980–2009. Large fires tend to burn in ecosystems with a his-

tory of similarly large fires (Keane et al., 2008). Fuel avail-

ability, however, limits reburning in the same location dur-

ing the forest return interval, which is typically ∼ 200 years

for Canadian forests (Ter-Mikaelian et al., 2009; de Groot et

al., 2013). We assume a random distribution of area burned

within each ecosystem, to allow for these tendencies.

We spatially allocate monthly area burned within each

ecoregion to 1◦× 1◦ as follows. In each 1◦× 1◦ grid square

we calculate the frequency of fires larger than 1000 ha dur-

ing 1980–2009; such fires account for ∼ 85 % of total area

burned in Canada and Alaska over this time period. Accord-

ingly, we arbitrarily attribute 85 % of area burned within each

ecoregion to fires of 1000 ha in size, and we then allocate

these large fires among the 1◦× 1◦ grid squares based on the

observed spatial probability of large fires (> 1000 ha), which

is the percentage of total large fires of the ecoregion located

in a specific grid box during this time frame. We then disag-

gregate the remaining 15 % of area burned into fires 10 ha in

size, and randomly distribute these fires across all grid boxes

in the ecoregion. We apply this random approach to calcu-

late both present-day (1997–2001) and future (2047–2051)

biomass burned. Within each time frame, the effect of lim-

ited fuel availability in the aftermath of a fire is taken into

account by reevaluating the spatial probability distribution of

area burned at each monthly time step. We scale the observed

probabilities by the fraction remaining unburned in each grid

box, and then use this modified probability distribution to

allocate large fires for the remaining months. Using sensi-

tivity tests, we find that specifying different areas burned to

the large fires (100 or 10 000 ha rather than 1000 ha) yields

< 1 % changes in predicted biomass burned, suggesting that

this approach is not sensitive to the presumed fire size in the

allocation procedure.

We take the emission factors for all ozone precursors ex-

cept nitric oxide (NO) from Andreae and Merlet (2001).

For NO we average the values from six studies of for-

est fires in the western US (Table S3 in the Supple-

ment), yielding 2.2 g NOx kg DM−1. Based on the measure-

ments by Hegg et al. (1990), which showed that NO con-

tributes 30 % of fire-induced NOx , this value is equivalent

to 1.6 g NO kg DM−1, consistent with the mean emission ra-

tio of 1.4 g NO kg DM−1 derived from measurements from

Alaskan fires (Nance et al., 1993; Goode et al., 2000). Our

NO emission factor is ∼ 50 % higher than that derived by

Alvarado et al. (2010) from aircraft measurements of boreal

fire plumes. They also found that 40 % of NOx emissions

are rapidly converted to peroxyacetyl nitrate (PAN) in fresh

plumes. We use the emission factor of 1.6 g NO kg DM−1

and neglect the rapid formation of PAN for our simulations,

recognizing that this likely leads to a small overestimation

of ozone formation immediately downwind of the fires. The

emission factors from Andreae and Merlet (2001) have re-

cently been updated by Akagi et al. (2011) and Urbanski

(2014). As a check, we compare the predicted fire emissions

using all three sets of emission factors (see Table S6 and re-

lated discussion in Sect. 3.3).

2.8 GEOS-Chem CTM and simulations

We simulate tropospheric ozone–NOx–VOC–aerosol chem-

istry using the GEOS-Chem global 3-D model of tropo-

spheric chemistry version 8.03.01, driven by present-day and

future simulated meteorological fields from the NASA/GISS

Model 3 with 4◦× 5◦ resolution (Wu et al., 2007; Wu et

al., 2008b). Compared with finer resolution, 4◦× 5◦ resolu-

tion does not induce a significant bias in surface ozone and

captures the major synoptic features over the United States

(Fiore et al., 2002, 2003), though it may underestimate the

average ozone level by 1–4 ppbv and predict fewer pollu-

tion episodes (Wang et al., 2009; Zhang et al., 2011). The

simulated daily and monthly ozone concentrations from the

GEOS-Chem model driven with meteorological reanalyses

have been widely validated with site-level, aircraft, and satel-

lite observations (Fiore et al., 2002; Wang et al., 2009; Al-

varado et al., 2010; Zhang et al., 2011). Monthly mean ozone

concentrations simulated with GISS meteorology have been

evaluated by comparison with climatological ozone-sonde

data and reproduce values throughout the troposphere usu-

ally to within 10 ppbv (Wu et al., 2007). In addition, simu-

lated daily ozone with GISS meteorology reasonably repro-

duces the summertime temporal variability of ozone concen-
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trations as well as the pollution episodes in the US (Wu et al.,

2008b).

Anthropogenic emissions for ozone precursors, including

NOx , CO, and non-methane VOCs are as described in Ta-

ble 1a of Wu et al. (2008b) and are summarized here for com-

pleteness and transparency. Global emissions of NOx and

CO are upscaled from the 1◦× 1◦ Emissions Database for

Global Atmospheric Research (EDGAR) version 3 (Olivier

and Berdowski, 2001). Anthropogenic VOC emissions are

derived from the Global Emission Inventory Activity (GEIA)

(Benkovitz et al., 1996). Over the North American domain,

these global emissions are replaced with the EPA National

Emissions Inventory (NEI) 2005 inventory (http://www.epa.

gov/). All the anthropogenic emissions are kept constant at

the level of the year 2000 for both present-day and future

simulations, to isolate the effects of changes in biomass burn-

ing emissions. However, natural emissions of these gases

from vegetation, soil, and lightning are computed locally

based on the meteorological variables within the model and

allowed to change with climate. Emissions of biogenic hy-

drocarbons are calculated with the Model of Emissions of

Gases and Aerosols from Nature (MEGAN), version 2.1

(Guenther et al., 2012). The lightning source of NOx is com-

puted locally in deep convection events using the scheme

of Price and Rind (1992), which relates number of flashes

to convective cloud top heights, together with the vertical

NOx distribution from Pickering et al. (1998). Stratosphere–

troposphere exchange (STE) is specified by the Synoz flux

boundary condition (McLinden et al., 2000) with a pre-

scribed global annual mean flux of 495 Tg ozone yr−1 for

both present-day and future simulations. Outside of North

America, we use climatological biomass burning emissions

derived from the inventory described in Lobert et al. (1999),

with seasonality from Duncan et al. (2003) and placed into

the boundary layer.

Over North America, we apply the biomass burning emis-

sions predicted by our method. For the western US, we

use area burned predicted with regressions from Yue et

al. (2013). We update the fire emissions over southern Cali-

fornia with our improved fire scheme (Yue et al., 2014). For

Canada and Alaska, we use the fire emissions derived from

calculated area burned and the estimated fuel consumption.

We do not change the emissions over the eastern US, which

are dominated by prescribed agricultural fires (Liu, 2004).

The GEOS-Chem model is not coupled with a plume model,

and as a result cannot simulate the impacts of plume rise. As

in Leung et al. (2007), we emit 20 % of emissions in each grid

square to the model levels between 3 and 5 km and leave the

rest in the boundary layer, as observations have shown that

over 80 % of plumes from North America fires are located in

the boundary layer (Val Martin et al., 2010). In calculating

photolysis rates within the plume, the model takes into ac-

count the attenuation of solar radiation by fire aerosols. This

calculation has some importance; in their model study, Jiang

et al. (2012) found that fire aerosols alone could reduce ozone

concentrations by up to 15 % close to the source due to the

light extinction.

Surface ozone concentrations in the 21st century will be

influenced not just by trends in wildfire emissions, but also

by changes in atmospheric transport, temperature, cloudi-

ness, wet and dry deposition, and natural/anthropogenic

emissions. To isolate the changes due to biomass burn-

ing emissions, we conduct an ensemble of 5-year simula-

tions for present day (1997–2001) and the mid-21st cen-

tury (2047–2051) for a total of nine sensitivity studies (Ta-

ble 1). Two simulations, FULL_PD and NOFIRE_PD, are

carried out with present-day climate: FULL_PD considers

present-day fire emissions from both western US and bo-

real forests, while NOFIRE_PD omits any fire emissions

in these regions. Five simulations are conducted with fu-

ture climate. In FULL_A1B, we additionally implement the

projected future fire emissions from western US and boreal

forests, while NOFIRE_A1B omits these emissions. Sim-

ulation WUS_FIRE applies future fire emissions in west-

ern US but the present-day emissions in boreal forests.

In contrast, BOREAL_FIRE uses present-day emissions in

western US but the future ones for boreal regions. The

last simulation with future climate, CLIM_CHAN, applies

present-day fire emissions everywhere as in FULL_PD. Fi-

nally, we perform another two sets of simulations, one for

present day (FULL_PD_EF) and the other for mid-century

(FULL_A1B_EF), both of which use emission factors from

Akagi et al. (2011), to estimate the modeling uncertainties

due to emission factors.

We examine the differences between FULL_PD and

NOFIRE_PD to quantify the impacts of wildfire emissions

in the present day, and the differences between FULL_A1B

and NOFIRE_A1B to quantify these impacts at the mid-

century. We use the differences between FULL_A1B and

BOREAL_FIRE to isolate the impacts of increased fire emis-

sions in western US at the mid-century. The differences be-

tween FULL_A1B and WUS_FIRE reveal the effects due

to changes of fire emissions in boreal forests, also at the

mid-century. The differences between CLIM_CHAN and

FULL_PD represent the impacts due solely to climate change

on the simulated ozone concentrations. We calculate the dif-

ferences between FULL_PD_EF and FULL_PD to quantify

the present-day uncertainties due to the emission factors, and

the differences between FULL_A1B_EF and FULL_A1B to

quantify these uncertainties at the mid-century. Each model

run was initialized with a 1-year spin-up. Taken together,

these seven cases yield insight into the influence of chang-

ing wildfire activity on surface ozone concentrations across

North America, and the relative importance of local versus

remote wildfires on US and Canadian ozone air quality.
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Table 1. Summary of simulations in this study.

Simulations Western US Boreal fire Climate Emission

fire emissions emissions factors

FULL_PD present-daya present-day present-day AM2001c

FULL_A1B futureb future future AM2001

NOFIRE_PD none none present-day AM2001

NOFIRE_A1B none none future AM2001

WUS_FIRE future present-day future AM2001

BOREAL_FIRE present-day future future AM2001

CLIM_CHAN present-day present-day future AM2001

FULL_PD_EF present-day present-day present-day A2011d

FULL_A1B_EF future future future A2011

a Present-day denotes 1997–2001.
b Future denotes 2047–2051.
c Emission factors from Andreae and Merlet (2001) and NOx emission factor from an ensemble of

experiments (Table S3 in the Supplement).
d Emission factors from Akagi et al. (2011)

3 Results

3.1 Regressions and predictions of area burned at

present day

Figure 3a shows observed, annual mean area burned for

1980–2009 averaged over the boreal ecoregions. In Canada,

the Western Mixed Wood Shield exhibits the greatest area

burned of nearly 7× 105 ha yr−1. In addition, large areas

burned of ∼ 4× 105 ha yr−1 and ∼ 3× 105 ha yr−1 are ob-

served in the Taiga Plain and the Western Taiga Shield. Most

fires in these very remote ecoregions are allowed to burn nat-

urally, without intervention. This practice, together with the

hot summers typical of continental interiors, leads to large

area burned (Stocks et al., 2002). The Western Cordillera

shows the least area burned, at 0.4× 105 ha yr−1, due to

abundant rainfall as well as active fire suppression (Stocks

et al., 2002). Fires in Alaska are about 3 times larger in the

Alaska Boreal Interior than in the Alaska Boreal Cordillera,

because the summer in interior Alaska is warmer and drier

relative to the southern part, which is influenced by moisture

from the Pacific (Wendler et al., 2011). In each ecoregion, the

top three largest fire years account for 36–67 % the total area

burned in 1980–2009, with the largest fraction in the Alaska

Boreal Cordillera (Fig. 4).

Table 2 shows the regressions we developed between area

burned and the suite of meteorological variables and fire

weather indices in each ecoregion. These fits explain 34–

75 % (p < 0.001) of the variance in area burned (Fig. 3b). In

most ecoregions, the regressions capture well the interannual

variations of area burned, although they usually underesti-

mate the values for extreme years (Fig. 4). For the top three

large fire years in each ecoregion, the predictions underesti-

mate the total area burned by 22–57 %, with the worst match

in the Hudson Plain. Such failure in predicting extreme fires

is a common weakness of fire models, no matter the approach
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Figure 3. (a) Observed annual area burned and (b) fraction of the

variance in observed area burned explained by the regression in

each ecoregion for the period of 1980–2009 (R2). The ecoregions

are: Alaska Boreal Interior (ABI), Alaska Boreal Cordillera (ABC),

Taiga Cordillera (TC), Canadian Boreal Cordillera (CBC), West-

ern Cordillera (WC), Taiga Plain (TP), Boreal Plain (BP), West-

ern Taiga Shield (WTS), Eastern Taiga Shield (ETS), Hudson Plain

(HP), Western Mixed Wood Shield (WS), and Eastern Mixed Wood

Shield (ES). Observations are compiled using fire reports from

the Fire and Aviation Management Web Applications (FAMWEB)

for Alaska and those from the Canadian National Fire Database

(CNFD) for Canada.
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for 1980-2009 in boreal ecoregions. The area burned is calculated using the regressions 1474 
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Figure 4. Observed (red solid lines) and predicted (blue dashed lines) area burned (105 ha) for 1980–2009 in boreal ecoregions. The area

burned is calculated using the regressions for the fire season (May–October) for each ecoregion. Site-based meteorological observations from

GSOD are used in the prediction. The fraction of the variance in observed area burned explained by the regression (R2) is shown on each

panel.

– e.g., regressions (Balshi et al., 2009; Spracklen et al., 2009;

Yue et al., 2013), parameterizations (Crevoisier et al., 2007;

Westerling et al., 2011), and dynamic global vegetation mod-

els (DGVMs; Bachelet et al., 2005). The leave-one-out cross

validation shows RMSE / SD ratios between 0.53 and 1.1 in

boreal ecoregions (Table 4), suggesting that the prediction

error is usually smaller than the variability of data. In a com-

parable study, Littell et al. (2009) calculated cross-validated

RMSE / SD ratios of 0.56–2.08 for area burned in western US

ecoregions during 1977–2003. Our prediction shows much

lower RMSE / SD ratios, indicating that the derived regres-

sions (Table 4) are reasonably robust for the future projec-

tions.

We find that meteorological variables for the current year

are selected as the first term in 10 of the 12 ecoregions, in-

dicating that area burned in the boreal forests is most re-

lated to current weather (Table 2). In contrast, Westerling et

al. (2003) suggested that wildfire activity in shrub ecoregions

in the western US is closely related to meteorology in previ-

ous years, because the antecedent moisture levels can control

fuel growth. In boreal forests, however, fuel load is peren-

nially abundant, and so weather in the current year is more

important here. Our regressions show that the 500 hPa height

is the dominant factor affecting boreal fires, as it appears in

eight regression fits and is selected as the first term for three

of them. Temperature, which highly correlates with geopo-

tential height (R > 0.85) in spring and summer, is selected as

the first term in three other ecoregions. Of the six ecoregions

that have either geopotential height or temperature as the first

term, five are located in Alaska and western Canada, suggest-

ing that wildfire activity in these areas is greatly influenced

by temperature or by blocking highs that lead to persistent

hot and dry conditions. Since our regression method does

not permit correlation among the predictors, temperature and

geopotential height are not selected for the same season and

year in any of the ecoregions. Fire indices, which combine
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Table 2. Regression fitsa for each aggregated ecoregion.

Ecoregion Regressionsa R2 RMSE/SDb

Alaska Boreal Interior 2.2× 105 Tmax.SUM + 5.7× 103 HGT.SUM(−1) – 8.1× 104 ISImax(−1)− 3.5× 107 60 % 0.66

Alaska Boreal Cordillera 5.8× 103 HGT.SUM + 4.8× 104 Tmax.AUT(−2) + 4.6× 104T.SPR − 3.3× 107 61 % 0.87

Taiga Cordillera 5.7× 104 Tmax.ANN(−2) + 2.8× 103 HGT.SUM – 1.5× 107 36 % 0.98

Canadian Boreal Cordillera 7.6× 103 HGT.SUM − 4.2× 107 52 % 0.82

Western Cordillera 3.5× 104 Tmax.SUM − 8.3× 102 HGT.SPR + 6.4× 102 DMCmax(−1)+ 3.7× 106 53 % 0.85

Taiga Plain 9.8× 105 ISI − 5.9× 105 Prec.FS(−1)− 1.5× 106 Prec.Win − 4.7× 103 75 % 0.53

Boreal Plain 8.8× 104 DSRmax+ 5.1× 104 RH.SUM(−2)+ 2.1× 104 FWImax(−1) − 4.0× 106 52 % 0.86

Western Taiga Shield 1.9× 105 ISImax+ 5.7× 104 RH.AUT − 6.0× 106 46 % 1.03

Eastern Taiga Shield 5.4× 104 RH.WIN(−2)− 6.2× 104 RH.ANN − 7.7× 103 DMCmax(−2)+ 1.2× 106 38 % 1.10

Hudson Plain 2.4× 103 HGT.SUM − 1.8× 104 T.SPR − 1.6× 104 Tmax.WIN(−1)− 1.4× 107 34 % 1.03

Western Mixed Wood Shield 2.0× 104 BUImax+ 8.3× 103 HGT.SUM − 4.7× 107 67 % 0.55

Eastern Mixed Wood Shield −6.7× 104 RH.SUM + 2.8× 103 HGT.AUT(−1)− 1.0× 107 43 % 0.81

a The values (−1) or (−2) after a predictor indicates that the meteorological field is 1 or 2 years earlier than current area burned. Variables are T (temperature), Tmax (maximum

temperature), RH (relative humidity), Prec (precipitation), HGT (geopotential height), and fire indexes from CFWIS, such as Duff Moisture Code (DMC), Build-up Index (BUI), Initial

Spread Index (ISI), and Daily Severity Rating (DSR). Meteorological fields are averaged for winter (WIN, DJF), spring (SPR, MAY), summer (SUM, JJA), autumn (AUT, SON), fire season

(FS, MJJASO), and the whole year (ANN). The order of the terms indicates their contributions to the R2 in the regression.
b Ratios between predicted residual sum of squares (PRESS) root mean square error (RMSE) and standard deviation (SD) as an indicator of the leave-one-out prediction error.

the impacts from temperature, humidity, and wind speed, are

the dominant predictors in the four central Canadian ecore-

gions. In three of these four regions, moisture variables such

as relative humidity and precipitation are also selected. Our

method yields relative humidity as the leading term in the

two eastern ecoregions, indicating that the dryness of fuel is

most important for wildfire activity there.

Our results confirm that wildfires in Alaska and western

Canada are related to geopotential height anomalies, which

are associated with the positive phase of either the Pacific-

North American (PNA) pattern or the Pacific Decadal Oscil-

lation (PDO; Fauria and Johnson, 2006, 2008). However, in

some of the central and eastern Canadian ecoregions (e.g.,

Taiga Plain and Eastern Taiga Shield), such height anoma-

lies are not selected as terms in our regressions (Table 2).

Although geopotential height may still influence wildfire ac-

tivity in those areas, this variable tends to correlate with fire

weather indices or moisture variables. We attempt to avoid

collinearity in our regressions, and so geopotential height

may not be selected as a predictor there.

We compared our results with those in Flannigan et

al. (2005), who developed regressions in similar ecoregions.

Relative to their R2 of 0.56 and 0.60 in the Taiga Plain and

the Western Mixed Wood Shield, where large area burned

is observed (Fig. 3a), our regressions yield higher R2 of 0.75

and 0.67. This improvement may result from our use of mete-

orological data with better spatial coverage or our inclusion

of terms dependent on the meteorology in previous years.

However, our regressions in the Western Taiga Shield, the

Eastern Taiga Shield, and the Hudson Plain explain 34–46 %

of the variance in observed area burned, much lower than the

64 % predicted in Flannigan et al. (2005), which aggregated

these three ecoregions into one. The larger domain in Flan-

nigan et al. (2005) apparently smoothed spikes in the area

burned data (Fig. 4) and as a result increased the R2 for re-

gressions (Spracklen et al., 2009). We treat the three regions

separately due to their very different ecologies.

We next calculate present-day (1983–1999) area burned

by applying present-day meteorological fields from the

13 GCMs to our regressions. We start with 1983 since we

need to apply factors from the previous 2 years in the regres-

sions. As Figure 5a shows, in eight ecoregions the median

area burned from the ensemble of GCMs matches the obser-

vations within ±15 %. However, the predicted area burned is

overestimated by 54 % in the Eastern Taiga Shield and un-

derestimated by 30 % In the Taiga Plain. These biases do not

derive from the long-term mean model meteorology, since

we scale the simulated fields with means from observations.

Instead, the biases arise from our use of fire weather indices

in the regressions, which depend on the daily variability in

meteorology. For example, in the Taiga Plain, the predicted

median ISI is lower than observed by 7 %. In the same ecore-

gion, the site records show that more than 30 % of days have

precipitation less than 0.1 mm day−1 during fire seasons for

1980–2009. However, the GCMs predict only 2–13 % days

with < 0.1 mm day−1, even after scaling with the means from

observations. In contrast, they predict 55–65 % of days with

rainfall of 0.1–1.0 mm day−1, much more than the 37 % from

observations. The overprediction of drizzle, a common prob-

lem in GCMs (Mearns et al., 1995), results in lower ISI com-

pared with observations. The same problem in modeled pre-

cipitation also reduces the predicted DMCmax in the Eastern

Taiga Shield, leading to an overestimate in area burned when

applied with a negative coefficient. Flannigan et al. (2005) re-

ported a similar problem in their study, and they subtracted a

constant from the GCM precipitation to match the observed

rainfall frequency. We do not follow this approach because

our predicted present-day median area burned agrees reason-

ably well with that observed. The non-linear response of fire

weather indices to daily meteorology contributes to the un-
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certainty of predictions, resulting in larger spread of ratios

for those ecoregions whose regressions depend on the fire

indices (Table 2).

3.2 Projection of area burned at the mid-century

Figure 6 shows the changes in key meteorological variables

at the mid-century relative to present day, as predicted by

the 13 GCMs. Temperatures across all ecoregions show me-

dian increases of∼ 2 ◦C during the fire season, with all mod-

els predicting significant changes. Meanwhile, precipitation

rates increase by 0.05–0.23 mm day−1 in the median, likely

as a result of a poleward shift of mid-latitude storm tracks

and precipitation (Yin, 2005). However, these increases in

precipitation are significant for only four to eight GCMs,

depending on the ecoregion, and in some ecoregions some

models project a drier climate by the mid-century, reflect-

ing the large uncertainty in model projections of regional hy-

drology (Christensen et al., 2007). The 500 hPa geopotential

heights are predicted to rise by 2050, with median increases

of 30–60 m (0.6–1 %) and these changes are significant for

all GCMs.

We find that the wildfire response to these trends in mete-

orological variables varies greatly by ecoregion, with large

increases in area burned by 2050 in Alaska and western

Canada, but little or no change in area burned elsewhere

(Fig. 5b). The median area burned at the mid-century in-

creases by 130–350 % in Alaska and the western Canadian

ecoregions, relative to present day (Figs. 5b, 7a and Table 3).

The greatest increase in area burned occurs in the Alaska

Boreal Cordillera, where area burned at the mid-century is

more than 4 times that of the present day. These increases

in Alaska and western Canada are largely driven by changes

in temperature and/or geopotential height (Table S4 in the

Supplement), and as a result are statistically robust in 11 to

13 GCMs, depending on the ecoregion (Fig. 7b). The central

and southern Canadian ecoregions show more moderate and

less robust increases in area burned of 40–90 %, with only

three to eight models projecting significant changes. In these

ecoregions, fire activity depends either on hydrological vari-

ables (e.g., RH for the Eastern Mixed Wood Shield) or on

fire indices that combine effects from temperature and mois-

ture (e.g., the fire indices DSR and FWI in the Boreal Plain

and the fire index BUI in the Western Mixed Wood Shield;

Table 2). As a result, the effects of increased precipitation in

these ecoregions may partly offset the effects of rising tem-

peratures on wildfires.

In some of the most northern ecoregions within the Cana-

dian interior, median area burned decreases in the wetter

climate of the mid-century. In the Taiga Plain, the median

area burned decreases by 50 % (Table 3, Fig. 7a) despite the

1.7 ◦C increase in temperature (Fig. 6a). In the Western Taiga

Shield, where area burned is projected as a function of the

fire index ISI (positive relationship, Table 2) and relative hu-

midity, the median area burned shows a small, insignificant
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Figure 5. (a) Ratios of modeled to observed area burned for 1983–

1999 and (b) the ratios of mid-century (2048–2064) to the present-

day (1983–1999) area burned, as projected by an ensemble of

GCMs. The ecoregions are: Alaska Boreal Interior (ABI), Alaska

Boreal Cordillera (ABC), Taiga Cordillera (TC), Canadian Boreal

Cordillera (CBC), Western Cordillera (WC), Taiga Plain (TP), Bo-

real Plain (BP), Western Taiga Shield (WTS), Eastern Taiga Shield

(ETS), Hudson Plain (HP), Western Mixed Wood Shield (WS), and

Eastern Mixed Wood Shield (ES). Different symbols are used for

each model. The black bold lines indicate the median ratios. Note

the difference in scale between the two panels.

decrease in the future atmosphere (Table 3, Fig. 7b), because

the increases of rainfall significantly reduce ISI there. In the

Eastern Taiga Shield, where area burned is a function of the

fire index DMC (negative relationship, Table 2) and relative

humidity, the median area burned again shows an insignifi-

cant decrease by mid-century (Table 3, Fig. 7b). DMC is re-

lated to both temperature and precipitation. Here rising tem-

peratures enhance DMC and outweigh the effects of greater

humidity (Table S4 in the Supplement).

Our projection of larger increases in Alaska and western

Canadian ecoregions is consistent with the observed trends

for 1959–1999 in Kasischke and Turetsky (2006) and with

the projection by Flannigan et al. (2005) for 2080 to 2100.

However, Flannigan et al. (2005) predicted area burned in-

creases of 40–60 % in the Taiga Plain with 3×CO2, where

we project a decrease of 50 % with∼ 1.5×CO2. The reasons

for this discrepancy are not clear. In our results, a median in-

crease of 0.1 mm day−1 in summer precipitation drives the

decrease in area burned in the Taiga Plain, but Flannigan et

www.atmos-chem-phys.net/15/10033/2015/ Atmos. Chem. Phys., 15, 10033–10055, 2015
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Table 3. Observed and projected area burned in boreal ecoregions.

Ecoregions Observeda Present-day Future Ratioc No. of No. of

(1983–1999) regressionb regressionb (future/ modelsd modelse

(1983–1999) (2048–2064) present) (p < 0.05) (M ± 30 %)

Alaska Boreal Interior 2.1± 3 3.7± 2.9 9.7± 3.6 2.46 12 6

Alaska Boreal Cordillera 0.6± 1 1.1± 1.3 5.3± 1.7 4.85 13 10

Taiga Cordillera 0.9± 1.7 0.9± 0.8 3.3± 0.7 3.26 13 11

Canadian Boreal Cordillera 1.3± 1.3 1.7± 1.3 4.5± 1.4 2.64 13 13

Western Cordillera 0.2± 0.2 0.3± 0.4 0.8± 0.4 2.66 11 11

Taiga Plain 3.8± 4.6 2.5± 2.7 1.6± 1.9 0.48 5 5

Boreal Plain 2.4± 3.5 2.6± 2.7 4.7± 3.2 1.44 3 8

Western Taiga Shield 3.7± 7.1 4± 4.3 4.1± 3.7 0.96 0 9

Eastern Taiga Shield 1.9± 4.3 2± 1.2 1.6± 1.2 0.86 1 11

Hudson Plain 1± 1.6 0.9± 0.5 1± 0.5 1.2 2 9

Western Mixed Wood Shield 6.8± 7.4 7.3± 4.8 11.1± 5.1 1.65 8 9

Eastern Mixed Wood Shield 1.7± 1.8 1.8± 1.3 3.3± 1.6 1.91 8 8

a AB is area burned (105 ha yr−1). Results in each ecoregion are shown as AB ± σ . AB is the long-term average of the AB during fire season

(May–October), and σ is the standard deviation.
b Results in each ecoregion are the median values of AB and σ predicted using the meteorological fields from 13 GCMs for the A1B scenario.
c Results in each ecoregion represent the median value of the 13 ratios of future AB to present-day AB, calculated with the GCM meteorology.
d Number out of 13 models that predict a significant (p < 0.05) increase in AB in each ecoregion, as determined by the Student t test.
e Number out of 13 models that predict a ratio within ±30 % of the median ratio.

al. (2005) did not report their trend in modeled precipita-

tion. In addition, our regression for the Taiga Plain has ISI

as the leading term, while the leading term in Flannigan et

al. (2005) is temperature. Based on the same GCM meteorol-

ogy as Flannigan et al. (2005) and using a similar approach,

Amiro et al. (2009) found a modest increase of 10 % in area

burned with 2×CO2 for the Taiga Plain, the lowest enhance-

ment among all Canadian ecoregions for that study.

3.3 Estimate of future fire emissions

We first compare our derived fuel consumption with previous

studies. Figure 8a shows the mean annual biomass burned

for 1980–2009, calculated from monthly areas burned and

monthly fuel consumption (Sect. 2.6). Figure 2b shows the

mean fuel consumption per unit area during the fire season

for 1980–2009. We find that the mean fuel consumption per

unit area is ∼ 30 % less than that for moderately dry condi-

tions for which we assumed an average DC of 390 (Fig. 2).

Most boreal area burned occurs during the relatively moist

months of June and July (Fig. S1 in the Supplement), when

the monthly average DC is usually less than 370 (Amiro et

al., 2004). In the eastern ecoregions (Hudson Plain, Eastern

Taiga Shield, and Eastern Mixed Wood Shield), the values for

mean fuel consumption are as much as 50 % less than those

for moderately dry conditions due to high moisture content

in fuel there (Fig. S1).

In Table 4 we compare our estimates for mean fuel con-

sumption with those from other studies, which were derived

from forest inventories and field measurements (French et

al., 2000; Balshi et al., 2007), fuel-weather models (Amiro

et al., 2001; Amiro et al., 2009), and biogeochemical models

based on satellite observations (van der Werf et al., 2010).

We also compare our results with estimates based on wild-

fire incidents (Table S5 in the Supplement). In the Alaska

Boreal Interior, our estimate of 5.5 kg DM m−2 is within

∼ 10 % of those by Balshi et al. (2007) and van der Werf

et al. (2010), but is ∼ 25 % lower than that of French et

al. (2000). Turetsky et al. (2011) collected data from 178

sites in the Alaskan black spruce ecosystem and estimated

that average fuel consumption is 5.9 kg DM m−2 for early-

season fires (May–July) but increases to 12.3 kg DM m−2 for

late-season fires (after 31 July; Table S5). Based on our com-

pilation of fuel consumption (Table 2) and the calculated

monthly DC values for Alaska (Fig. S1), we find similar re-

sults of 6.1 kg DM m−2 for May–July and 14.6 kg DM m−2

for August–October for C2 fuel (boreal spruce). A recent

analysis by French et al. (2011) showed that different mod-

els of fuel consumption provide very different results for a

given fire, with a range of 2.7–12.2 kg DM m−2 for a major

fire in Alaska in 2004 (Table S5). The CONSUME model

(v. 3.0) yielded 2.8–4.7 kg DM m−2 for moderate to very

dry conditions for that fire, while a field study estimated

5.2 kg DM m−2 (French et al., 2011).

There is less consistency among different estimates of

mean fuel consumption in the Canadian ecoregions (Ta-

ble 4). Our estimates fall in the range of previous work for

most ecoregions except for the Western Cordillera and the

Taiga Plain, where our values are ∼ 100 % higher than most

other estimates. These two ecoregions are located in west-

ern Canada, where seasonal DC is usually high, indicating

relatively dry conditions (Fig. S1 in the Supplement). Our

moisture categories derived from the single DC probability
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Table 4. Fuel consumptiona in boreal ecoregions, as reported by recent studies.

Ecoregions French et Amiro Amiro Balshi GFED3f This studyg

al. (2000)b et al. (2001)c et al. (2009)d et al. (2007)e 1980–2009 PD A1B

Alaska Boreal Interior 7.5 N/A N/A 4.9 5.2 5.5 (4.6) 5.4 5.6

Taiga Cordillera N/A 3.1 N/A N/A 2.7 3.8 (3.5) 3.6 3.7

Can. Boreal Cordillera 5.4 3.2 N/A 7.2 3.5 5.5 (4.7) 5.2 6.0

Western Cordillera N/A 3.9 N/A N/A 2.7 6.6 (5.9) 6.2 7.0

Taiga Plain 2.9 2.9 3.5 3.3 5.4 7.2 (6.6) 7.7 8.2

Boreal Plain 3.8 2.4 2.8 6.8 2.1 5.6 (5.0) 5.7 5.8

W. Taiga Shield 1.0 1.9 1.5 1.8 5.3 3.9 (3.9) 4.9 5.4

E. Taiga Shield 1.6 1.9 1.7 3.0 4.0 1.8 (2.2) 2.3 2.8

Hudson Plain 1.7 1.9 N/A 2.9 6.7 3.1 (4.1) 3.3 3.8

W. Mixed Wood Shield 2.1 2.5 3.0 5.7 4.9 6.4 (6.6) 6.4 6.9

E. Mixed Wood Shield 2.6 2.0 2.4 0.5 2.9 3.0 (4.1) 3.1 3.6

a Fuel consumption unit is kg DM m−2 burned. For some studies that use units of kg C m−2 burned, we multiply their values by 2 g DM g−1 C. DM denotes dry matter.
b Values are averages of 1980–1994.
c Values are averages of 1959–1995.
d Values are estimated for forest floor fuel consumption in a GCM 1×CO2 scenario.
e Values are averages of 1959–2002, estimated with the same burning severity parameters as French et al. (2000) but with modeled vegetation and soil carbon pool.
f GFED3: Global Fire Emission Database version 3 for 1997–2010.
g Results are the fuel consumption weighted by area burned and drought code (DC) for 1980–2009, using the DC thresholds determined by a single probability

distribution for North America. As a comparison, the values calculated with ecoregion-specific DC thresholds are shown in brackets. For PD and A1B, values are

calculated using predicted median DC for present day (1996–2001) and mid-century (2046–2051) from the multi-model projection.

distribution (Fig. S2 in the Supplement) may overestimate

fuel dryness in the west. On the other hand, our estimates

show low fuel consumption in the eastern ecoregions, such

as Eastern Taiga Shield, Hudson Plain, and Eastern Mixed

Wood Shield, consistent with most of other studies. In a sen-

sitivity test, we derive fuel consumption with regional DC

thresholds based on ecoregion-specific probability distribu-

tions. This approach reduces western fuel consumption by

8–16 %, but increases eastern values by 2–37 % (Table 4). It

also predicts lower Alaskan fuel consumption compared with

other studies. The boreal biomass burned calculated with this

alternative approach is about 156.2 Tg DM yr−1 for 1980–

2009, almost identical to that estimated using a single prob-

ability distribution to define the DC thresholds (Fig. 8a).

We estimate fuel consumption at present day and mid-

century with the median DC values from the multi-model

ensemble. The present-day values are close to the ones based

on observed meteorology (Table 4). By the mid-century,

DC values increase in the warming climate, indicating dry-

ing, and fuel consumption increases by 2–22 %, depend-

ing on the ecoregion, with a 9 % average enhancement. Us-

ing the random method described in Sect. 2.7, we derive

gridded area burned based on the projection with regres-

sions. The estimated biomass burned, averaged over 1997–

2001 (Fig. 8b) correlates with observations averaged over

1980–2009 (Fig. 8a) with R2
= 0.5 for ∼ 1700 boreal grid

squares, indicating that our prediction captures the observed

spatial pattern reasonably well. The total biomass burned

of 160.2 Tg DM yr−1 is just 2.5 % higher than that obtained

with the observed area burned.

Estimates of fire emissions depend on the emission factors.

Using the same biomass burned calculated with observed

area burned, we calculate three different sets of emissions us-

ing the factors from Andreae and Merlet (2001) (except for

NO, see Table S3 in the Supplement), Akagi et al. (2011), and

Urbanski (2014) (Table S6 in the Supplement). These emis-

sions show similar magnitudes in CO and NH3, but some

differences in NOx and non-methane organic compounds

(NMOC). For example, NOx from Akagi et al. (2011) is

higher than that in Urbanski (2014) and in Table S3 by 30–

50 %. Meanwhile, NMOC from Andreae and Merlet (2001)

is lower than that in Akagi et al. (2011) and Urbanski (2014)

by 20 %. In the following simulations and analyses, we use

emission factors from Andreae and Merlet (2001) (except for

NO from Table S3) and discuss the modeling uncertainties

due to the application of different emission factors.

Our value of biomass burned using the regression yields

emissions of 0.27 Tg yr−1 for NO and 18.6 Tg yr−1 for CO

in Alaska and Canada at the present day. By the mid-century,

we find that total biomass burned across the boreal ecore-

gions increases by ∼ 90 % (Fig. 8c) due to the ∼ 70 % in-

crease in area burned and the∼ 10 % increase in average fuel

consumption (Table 4). In Alaska, the maximum increase of

36 Tg DM yr−1 (168 %) is predicted for the Alaska Boreal

Interior, where area burned by the 2050s increases by 146 %

(Table 3). In Canada, the Western Mixed Wood Shield has the

highest increase of 29 Tg DM yr−1 (64 %). These changes in

biomass burned result in increases of 0.24 Tg yr−1 for NO

emissions and 17.1 Tg yr−1 for CO in boreal regions. Over

the western US, the ∼ 80 % enhancement in biomass burned

yields an increase in NO emissions, from 0.03 Tg yr−1 in the

www.atmos-chem-phys.net/15/10033/2015/ Atmos. Chem. Phys., 15, 10033–10055, 2015
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Figure 6. Calculated changes in (a) surface air temperature, (b) precipitation, and (c) 1525 

geopotential height at 500 hPa during the fire season (May-October) in 2048-2064 1526 

relative to 1983-1999. Results are from an ensemble of GCMs for the A1B scenario. The 1527 

ecoregions are: Alaska Boreal Interior (ABI), Alaska Boreal Cordillera (ABC), Taiga 1528 

Cordillera (TC), Canadian Boreal Cordillera (CBC), Western Cordillera (WC), Taiga 1529 

Plain (TP), Boreal Plain (BP), Western Taiga Shield (WTS), Eastern Taiga Shield (ETS), 1530 

Hudson Plain (HP), Western Mixed Wood Shield (WS), and Eastern Mixed Wood Shield 1531 

(ES). Different symbols are used for each model. The black bold lines indicate the 1532 

median changes. 1533 
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Figure 6. Calculated changes in (a) surface air temperature, (b) pre-

cipitation, and (c) geopotential height at 500 hPa during the fire sea-

son (May–October) in 2048–2064 relative to 1983–1999. Results

are from an ensemble of GCMs for the A1B scenario. The ecore-

gions are: Alaska Boreal Interior (ABI), Alaska Boreal Cordillera

(ABC), Taiga Cordillera (TC), Canadian Boreal Cordillera (CBC),

Western Cordillera (WC), Taiga Plain (TP), Boreal Plain (BP),

Western Taiga Shield (WTS), Eastern Taiga Shield (ETS), Hudson

Plain (HP), Western Mixed Wood Shield (WS), and Eastern Mixed

Wood Shield (ES). Different symbols are used for each model. The

black bold lines indicate the median changes.

present day to 0.05 Tg yr−1 in the future climate, and an in-

crease in CO emissions from 1.9 to 3.4 Tg yr−1.

3.4 Impacts of wildfire on ozone air quality

Daily maximum 8-hour average (MDA8) surface ozone is

a metric used by the US Environmental Protection Agency

(EPA) to diagnose ozone air quality. In this study, we use

MDA8 ozone instead of daily mean ozone for all the anal-

yses and discussion. Figure 9a shows the simulated MDA8

surface ozone, averaged over North American in summer

(June-July-August, JJA). We focus on the summer season,

when fire activity peaks in both the US and Canada. The
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Figure 7. (a) Median ratios of mid-century (2048–2064) to present-

day (1983–1999) area burned in each boreal ecoregions, as pre-

dicted by an ensemble of GCMs and (b) the number of GCMs out

of 13 total which predict significant changes of the same sign as the

median. The ecoregions are: Alaska Boreal Interior (ABI), Alaska

Boreal Cordillera (ABC), Taiga Cordillera (TC), Canadian Boreal

Cordillera (CBC), Western Cordillera (WC), Taiga Plain (TP), Bo-

real Plain (BP), Western Taiga Shield (WTS), Eastern Taiga Shield

(ETS), Hudson Plain (HP), Western Mixed Wood Shield (WS), and

Eastern Mixed Wood Shield (ES).

figure shows mean MDA8 values of 40–75 ppbv across the

US, with the maximum in the east due to local anthropogenic

emissions (Fiore et al., 2002). The concentrations in Alaska

and Canada range from 20 to 60 ppbv. However, for most re-

gions north of 55◦ N, MDA8 is generally less than 40 ppbv.

As shown in Fig. 9b, we find that wildfire emissions in

these far northern areas contribute 1–10 ppbv to average JJA

surface ozone concentrations, with a mean contribution of

4 ppbv. These values are considerably larger than the aver-

age 1 ppbv contribution of wildfires to surface ozone that we

calculate in the western US (Fig. 9b) because of the much

higher biomass burning emission in Alaska. In the eastern

US, wildfires make almost no contribution to mean surface

ozone in summer.

The increased fire emissions that we calculate at the mid-

century result in greater ozone pollution across North Amer-

ica (Fig. 9c). We find a maximum JJA mean perturbation

of 22 ppbv along the border between Alaska and Canada,

where the largest increase in future area burned is pro-

jected (Fig. 7a). In central Canada, the future fire emis-
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Figure 8. Biomass burning (BB) in Alaska and Canada in terms of dry matter (DM) burned per year, calculated as the product of area burned

and fuel consumption. (a) shows values based on observations for 1980–2009, (b) the predicted values for 1996–2001, and (c) the projections

for 2046–2051. The differences between mid-century and present day (c–b) are shown in (d). Annual mean values summed over the whole

domain are shown in brackets. Units: Tg DM yr−1.

sions contribute 6–9 ppbv to JJA mean ozone concentrations.

For the western US, the fire perturbation for surface ozone

is about 2 ppbv, with the largest values of 3–5 ppbv in the

Pacific-Northwest and Rocky Mountain forest ecoregions.

Relative to the present-day contribution, the fire perturba-

tion at the mid-century enhances JJA mean surface ozone by

an additional 4.6 ppbv in Alaska, 2.8 ppbv in Canada, and

0.7 ppbv in the western US (Fig. 9d), indicating a degrada-

tion in air quality. Our estimate of future fire impacts de-

pends on the emission factors we adopted. Using emission

factors from Akagi et al. (2011), we calculate larger fire-

induced ozone enhancements at both present day and the

mid-century (Fig. S3 in the Supplement). As a result, simula-

tions with emission factors from Akagi et al. (2011) project

ozone increases of 5.5 ppbv in Alaska, 3.2 ppbv in Canada,

and 0.9 ppbv in the western US by future wildfire emissions.

These enhancements are 14–23 % higher than our previous

estimates with emission factors from Andreae and Merlet

(2001) and Table S3.

A key question is to what extent boreal fires affect the

more populated regions of lower latitudes. In Fig. 10, we in-

vestigate the contributions of climate, local and boreal wild-

fire emissions, and atmospheric transport to JJA mean sur-

face ozone concentrations in the central and western US.

Fig. 10a shows that all these effects together increase sur-

face ozone in the US by 1–4 ppbv at the mid-century but

with large spatial variability. The enhancement in central

and southwestern states is mainly associated with climate

change (Fig. 10b), which increases temperature-driven soil

NOx emissions and air mass stagnation (Wu et al., 2008b).

In the northwestern coastal states, the impact of these ef-

fects is offset by the reduced lifetimes of PAN and ozone

in the warmer climate, which diminish the impact of Asian

emissions on surface ozone there (Wu et al., 2008b). How-

ever, the calculated increase of local wildfire emissions in

these coastal states and across the northwest enhances sur-

face ozone by 1–2 ppbv at the mid-century (Fig. 10c). In the

most northern states, this increase is enhanced by another

0.5 ppbv due to transport of pollutants from boreal wildfires

(Fig. 10d).

In Fig. 11 we examine the impact of wildfire emissions

on the frequency of ozone pollution episodes. In the north-

western US, where the impact of fire emission is especially

large (Fig. 10c), surface ozone above the 95th percentile
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Figure 9. (a) Simulated present-day MDA8 ozone at the surface in summer (June–August). (b) shows the contribution to MDA8 summertime

ozone by wildfire emissions in the present day (FULL_PD – NOFIRE_PD), and (c) shows the same contribution, but at the mid-century

(FULL_A1B – NOFIRE_A1B). (d) presents the change in the contribution of wildfires to MDA8 ozone between the two periods (i.e., c–b).

Descriptions of the sensitivity simulations are given in Table 1. The color scale saturates at both ends.

(i.e., on the five most polluted days in summer) increases by

2 ppbv at the mid-century (Fig. 11a). Simulations without fire

emissions show an increase of 1 ppbv above the same per-

centile, indicating that the increased wildfire emission alone

contributes a 1 ppbv enhancement during ozone pollution

episodes in this region. The changes are more significant for

Alaska and Canada, where we predict large increases in fire

activity (Fig. 9c). As Fig. 11b shows, climate change alone

decreases ozone above the 95th percentile ozone by an aver-

age ∼ 3 ppbv in Alaska, likely because of the effects of en-

hanced water vapor on background ozone (Wu et al., 2008a).

However, when changes in fire emissions are included, the

simulation predicts that ozone above the 95th percentile in-

stead increases by 12 ppbv at the mid-century, suggesting a

positive change of 15 ppbv due to wildfire alone. Over high

latitudes in Canada, climate change decreases the 95th per-

centile ozone by 1 ppbv; however, the inclusion of future fire

perturbation enhances it by 4 ppbv (Fig. 11c), indicating that

the contribution from wildfire may be as great as 5 ppbv.

4 Discussion and conclusions

We examined the effects of changing wildfire activity in a

future climate on June–August MDA8 ozone over the west-

ern US, Canada, and Alaska by the mid-century. We built

stepwise regressions between area burned and meteorolog-

ical variables in 12 boreal ecoregions. These regressions

explained 34–75 % of the variance in area burned for all

ecoregions, with 500 hPa geopotential heights and temper-

atures the driving factors. With these regressions and future

meteorology from an ensemble of climate models, we pre-

dicted that the median area burned increases by 150–390 %

in Alaska and the western Canadian ecoregions by the mid-

century due to enhanced 500 hPa geopotential heights and

temperatures. The area burned shows moderate increases of

40–90 % in central and southern Canadian ecoregions, but a

50 % decrease in the Taiga Plain, where most of the GCMs

predict increases in precipitation at the mid-century. Using

the GEOS-Chem CTM, we found that fire perturbation at the

mid-century enhances summer mean daily maximum 8-hour

surface ozone by 5 ppbv in Alaska, 3 ppbv in Canada, and

1 ppbv in the western US. The changes in wildfire emissions

have larger impacts on pollution episodes, as ozone above

the 95th percentile increases by 15 ppbv in Alaska, 5 ppbv in

Canada, and 1 ppbv in the northwestern US.

Our study represents the first time that multi-model meteo-

rology has been used to project future area burned in Alaskan

and Canadian forest. The individual models in our study pre-

dict changes in area burned of different magnitudes or even

of opposite sign, but the median values and the spread in

model results provide an estimate of both the sign and the

uncertainty of these projections. We find the projections are

most robust over Alaska and western Canada, where for al-
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Figure 10. (a) Simulated changes in MDA8 ozone at the surface in summer (June–August) at the mid-century relative to the present day

(FULL_A1B – FULL_PD) over the western and central United States. The other three panels show the contributions to the changes in

(a) from (b) climate change (CLIM_CHAN – FULL_PD), (c) changes in fire emissions in the western US (FULL_A1B – BOREAL_FIRE),

and (d) changes in fire emissions in Alaska and Canada (FULL_A1B – WUS_FIRE). Descriptions of the sensitivity simulations are given in

Table 1.

most all GCMs we calculate significant increases in area

burned (Fig. 7b; Table 3). For these regions, wildfire activ-

ity is largely associated with blocking highs and the result-

ing hot, dry weather, and both temperature and geopoten-

tial height show consistent and significant increases here in

all climate models (Fig. 6). However, for northern Canada,

where the control of blocking systems on area burned is

weaker, we projected a less robust decreasing trend in area

burned, due to the competing effects of hotter weather and

wetter conditions. The multi-model ensemble approach al-

lows us to identify the most robust changes in the future wild-

fire activity due to climate change, and as a result should be

more reliable than predictions using only 1–2 models, which

can yield very different projections, especially for northern

Canada (e.g., Wotton et al., 2010).

Our approach neglects the impacts of topography, human

activity, and fuel changes on wildfire trends. The aggregation

method used here for each ecoregion may hide the spatial

variation of both area burned and meteorological variables

and obscure their relationships (Balshi et al., 2009; Meyn et

al., 2010). Changes in fire domain and climate may lead to

changes in forest composition (DeSantis et al., 2011), result-

ing in different fire severity and spread efficiency (Thompson

and Spies, 2009).

For our study, we assumed that fuel load remains constant

for 50 years, but we calculated a 9 % average increase in

fuel consumption in boreal regions. Our assumption of con-

stant fuel load is justified at least for the conterminous US

since trends in heavy-fuel load in US forests are likely to be

gradual (Hanson and Weltzin, 2000). For boreal regions, re-

cent simulations with DGVMs show that large-scale forest

dieback may occur in coming decades, due to intense heat

and drought (Heyder et al., 2011). In addition, mountain pine

beetle outbreaks are important disturbances for both boreal

and US forests, leading to changes in fuel load and fuel mois-

ture with climatic shifts (Fauria and Johnson, 2009; Simard

et al., 2011; Jenkins et al., 2014). We did not consider these

effects in this study.

Compared with previous studies, our estimate of fuel con-

sumption shows higher values over western Canada (Ta-
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(a) Summer ozone in northwestern U.S.
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Figure 11. Simulated cumulative probability distributions of MDA8

ozone at the surface in summer (June–August) over (a) northwest-

ern US (> 40◦ N), (b) Alaska, and (c) Canada (> 55◦ N) for different

scenarios. Black shows the present-day (1997–2001) climate with-

out wildfire emissions; green shows future (2047–2051) climate

without wildfire emissions; blue indicates present-day climate in-

cluding the associated wildfire emissions; and red indicates future

climate including the associated wildfire emissions. Each point rep-

resents the value in one grid square within each region for each day

during the five model summers (1997–2001 or 2047–2051).

ble 4), where the largest increase in future area burned is

predicted (Fig. 7a), suggesting that the boreal fire emissions

might be overestimated. However, our estimate of a 9 % in-

crease in fuel consumption may, in fact, be conservative.

Some DGVM studies predict 30–40 % increases in burning

severity for US Pacific-Northwest forest by the end of the

21st century (Rogers et al., 2011). Moreover, observations

have suggested that large area burned sometimes results in

burning at greater soil depth than is typical (Turetsky et al.,

2011). Thus the projected increase in fire areas may amplify

future fuel consumption, leading to even larger emissions

than predicted in this study.

The emissions from boreal wildfires in our simulation

show limited contributions to ozone concentrations in down-

wind areas, but cause significant local ozone enhancement

in Alaska and Canada. However, observations point to un-

certainties in the relationship between wildfire activity and

ozone. First, the emission factors of ozone precursors are

not well constrained, especially for NOx . Sensitivity tests

with emission factors from Akagi et al. (2011) show 14–

23 % higher fire-induced ozone than that with emission fac-

tors from Andreae and Merlet (2001) and the NOx emis-

sion factor derived from an ensemble of experiments (Ta-

ble S3 in the Supplement). Using aircraft data from bo-

real fires, Alvarado et al. (2010) determined an emis-

sion factor of 1.1 g NO kg DM−1, lower than our value of

1.6 g NO kg DM−1 and much lower than the estimate of

3.0 g NO kg DM−1 for extratropical forest fires in Andreae

and Merlet (2001). Alvarado et al. (2010) found that 40 % of

wildfire NOx is rapidly converted to PAN and 20 % to HNO3,

and their estimate of 1.1 g NO kg DM−1 for fresh emissions

includes these two species. Second, observations do not con-

sistently reveal ozone enhancements during wildfire events.

Jaffe et al. (2008) found a significant correlation between

interannual variations of observed surface ozone and area

burned in the western US. Using the same ozone data set,

however, Zhang et al. (2014) did not find regional ozone

enhancements during wildfire events, when such enhance-

ments would be expected to be large. In their review, Jaffe

and Wigder (2012) reported that increased ozone is observed

in most plumes, but with huge variability in the enhancement

ratio of1O3 /1CO within the plume. Alvarado et al. (2010),

on the other hand, found that only 4 out of 22 plumes showed

enhanced ozone. Such discrepancies in plume data may be at-

tributed to differences in plume age (Alvarado et al., 2010),

emissions of wildfire NOx and VOCs (Zhang et al., 2014),

or plume photochemistry (Verma et al., 2009; Jiang et al.,

2012). Third, the effect of long-range transport of wildfire

PAN on ozone downwind is not well known. Observations

suggest that PAN forms rapidly in fresh fire plumes and

may enhance ozone downwind as it decomposes (Real et al.,

2007; Jaffe and Wigder, 2012). In their model study, Fischer

et al. (2014) reported a large effect of fires on PAN in the high

northern latitudes but limited impacts over the downwind ar-

eas in the US. In any event, our use of a moderately high NOx
emission factor and omission of rapid PAN formation within

the plume may lead to an overestimate of fire-induced ozone

in local areas (Alvarado et al., 2010).

Uncertainties may also originate from limitations in the

model configuration. First, GEOS-Chem CTM does not al-

low feedbacks of fire emissions to affect model meteorology

or biogenic emissions. Second, we estimated fire-induced O3

concentrations using monthly emissions, due to the limits

in the temporal resolution of predicted area burned. Such

an approach may have moderate impacts on the simulated

O3; Marlier et al. (2014) found < 1 ppb differences in sur-

face O3 concentrations over North America between sim-
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ulations using daily and monthly fire emissions. The same

study also predicted < 10 % differences in the accumulated

exceedances for MDA8 O3 globally. Third, the projections

were performed at coarse spatial resolution of 4◦× 5◦. As

shown in Zhang et al. (2011), however, mean MDA8 O3

in a nested grid simulation (0.5◦× 0.667◦) is only 1–2 ppbv

higher than that at 2◦× 2.5◦ resolution in the GEOS-Chem

model. Fiore et al. (2002) reached a similar conclusion in

comparing simulations at 4◦× 5◦ and 2◦× 2.5◦. They found

that the coarse model resolution smoothed the regional max-

imum, resulting in a more conservative estimate of the inten-

sity of pollution episodes.

Given these limitations, our estimate with a multi-model

ensemble consistently shows that wildfire activity will likely

increase in North American boreal forest by the mid-century,

especially in western Canada and Alaska. Our study suggests

that area burned could increase by 130–350 % in these two

regions, while in central and southern Canada, where most

people reside, area burned could increase 40–90 %. In north

central Canada, the competition between increased tempera-

ture and precipitation in the future atmosphere results in un-

certainty in the projections for area burned. Overall, these

trends in boreal wildfire activity may amplify the threat of

wildfires to Canadian residents, increase the expense of fire

suppression, and lead to more ozone pollution both locally

and in the central and western US. The regional perturba-

tion of summer ozone by future wildfires can be as high as

20 ppbv over boreal forests, suggesting large damage to the

health and carbon assimilation of the ecosystems (Pacifico

et al., 2015). Using a newly developed model of ozone veg-

etation damage (Yue and Unger, 2014), we plan to explore

the response of boreal ecosystems to fire-induced ozone en-

hancements.

The Supplement related to this article is available online

at doi:10.5194/acp-15-10033-2015-supplement.
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