6,788 research outputs found

    The Damping Tail of CMB Anisotropies

    Get PDF
    By decomposing the damping tail of CMB anisotropies into a series of transfer functions representing individual physical effects, we provide ingredients that will aid in the reconstruction of the cosmological model from small-scale CMB anisotropy data. We accurately calibrate the model-independent effects of diffusion and reionization damping which provide potentially the most robust information on the background cosmology. Removing these effects, we uncover model-dependent processes such as the acoustic peak modulation and gravitational enhancement that can help distinguish between alternate models of structure formation and provide windows into the evolution of fluctuations at various stages in their growth.Comment: 24pgs, aaspp4, 10 figs. included; supporting material (e.g. color figures) at http://www.sns.ias.edu/~whu/pub.htm

    Guidance of sentinel lymph node biopsy decisions in patients with T1-T2 melanoma using gene expression profiling.

    Get PDF
    AIM: Can gene expression profiling be used to identify patients with T1-T2 melanoma at low risk for sentinel lymph node (SLN) positivity? PATIENTS & METHODS: Bioinformatics modeling determined a population in which a 31-gene expression profile test predicted \u3c5% SLN positivity. Multicenter, prospectively-tested (n = 1421) and retrospective (n = 690) cohorts were used for validation and outcomes, respectively. RESULTS: Patients 55-64 years and ≥65 years with a class 1A (low-risk) profile had SLN positivity rates of 4.9% and 1.6%. Class 2B (high-risk) patients had SLN positivity rates of 30.8% and 11.9%. Melanoma-specific survival was 99.3% for patients ≥55 years with class 1A, T1-T2 tumors and 55.0% for class 2B, SLN-positive, T1-T2 tumors. CONCLUSION: The 31-gene expression profile test identifies patients who could potentially avoid SLN biopsy

    Observationally Determining the Properties of Dark Matter

    Get PDF
    Determining the properties of the dark components of the universe remains one of the outstanding challenges in cosmology. We explore how upcoming CMB anisotropy measurements, galaxy power spectrum data, and supernova (SN) distance measurements can observationally constrain their gravitational properties with minimal assumptions on the theoretical side. SN observations currently suggest the existence of dark matter with an exotic equation of state p/rho < -1/3 that accelerates the expansion of the universe. When combined with CMB anisotropy measurements, SN or galaxy survey data can in principle determine the equation of state and density of this component separately, regardless of their value, as long as the universe is spatially flat. Combining these pairs creates a sharp consistency check. If p/rho > -1/2, then the clustering behavior (sound speed) of the dark component can be determined so as to test the scalar-field ``quintessence'' hypothesis. If the exotic matter turns out instead to be simply a cosmological constant (p/rho = -1), the combination of CMB and galaxy survey data should provide a significant detection of the remaining dark matter, the neutrino background radiation (NBR). The gross effect of its density or temperature on the expansion rate is ill-constrained as it is can be mimicked by a change in the matter density. However, anisotropies of the NBR break this degeneracy and should be detectable by upcoming experiments.Comment: 16 pages, 10 figures, RevTeX, submitted to PR

    CMB Anisotropies: Total Angular Momentum Method

    Full text link
    A total angular momentum representation simplifies the radiation transport problem for temperature and polarization anisotropy in the CMB. Scattering terms couple only the quadrupole moments of the distributions and each moment corresponds directly to the observable angular pattern on the sky. We develop and employ these techniques to study the general properties of anisotropy generation from scalar, vector and tensor perturbations to the metric and the matter, both in the cosmological fluids and from any seed perturbations (e.g. defects) that may be present. The simpler, more transparent form and derivation of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique property that the CMB polarization is dominated by magnetic type parity at small angles (a factor of 6 in power compared with 0 for the scalars and 8/13 for the tensors) and hence potentially distinguishable independent of the model for the seed. The tensor modes produce a different sign from the scalars and vectors for the temperature-polarization correlations at large angles. We explore conditions under which one perturbation type may dominate over the others including a detailed treatment of the photon-baryon fluid before recombination.Comment: 32 pg., 10 figs., RevTeX, minor changes reflect published version, minor typos corrected, also available at http://www.sns.ias.edu/~wh

    Unusual raptor nests around the world

    Get PDF
    From surveys in many countries, we report using unusual nesting materials (e.g., paper money, rags, metal, antlers, and large bones) and unusual nesting situations. For example, we documented nests of Steppe Eagles [Aquila nipalensis] and Upland Buzzards [Buteo hemilasius] on the ground beside well-traveled roads, Saker Falcon [Falco cherrug] eyries in attics and a cistern, and Osprey [Pandian haliaetus] nests on the masts of boats and on a suspended automobile. Other records include a Golden Eagle [A. chrysaelos] nest 7.0 m in height, believed to be the tallest nest ever described, and, for the same species, we report nesting in rudimentary, nests. Some nest sites are within a Few meters of known predators or competitors. These unusual observations may be important in revealing the plasticity of a species' behavioral repertoire

    UV/Optical Nuclear Activity in the gE Galaxy NGC 1399

    Full text link
    Using HST/STIS, we have detected far-ultraviolet nuclear activity in the giant elliptical galaxy NGC 1399, the central and brightest galaxy in the Fornax I cluster. The source reached a maximum observed far-UV luminosity of \~1.2 x 10e39 ergs/s in January 1999. It was detectable in earlier HST archival images in 1996 (B band) but not in 1991 (V band) or 1993 (UV). It faded by a factor of ~4x by mid-2000. The source is almost certainly associated with the low luminosity AGN responsible for the radio emission in NGC 1399. The properties of the outburst are remarkably similar to the UV-bright nuclear transient discovered earlier in NGC 4552 by Renzini et al. (1995). The source is much fainter than expected from its Bondi accretion rate (estimated from Chandra high resolution X-ray images), even in the context of "radiatively inefficient accretion flow" models, and its variability also appears inconsistent with such models. High spatial resolution UV monitoring is a valuable means to study activity in nearby LLAGNs.Comment: 18 pages, 2 figures, 1 table; accepted for publication in Ap

    A measurement of the W boson mass using large rapidity electrons

    Get PDF
    We present a measurement of the W boson mass using data collected by the D0 experiment at the Fermilab Tevatron during 1994--1995. We identify W bosons by their decays to e-nu final states where the electron is detected in a forward calorimeter. We extract the W boson mass, Mw, by fitting the transverse mass and transverse electron and neutrino momentum spectra from a sample of 11,089 W -> e nu decay candidates. We use a sample of 1,687 dielectron events, mostly due to Z -> ee decays, to constrain our model of the detector response. Using the forward calorimeter data, we measure Mw = 80.691 +- 0.227 GeV. Combining the forward calorimeter measurements with our previously published central calorimeter results, we obtain Mw = 80.482 +- 0.091 GeV

    Distinguishing Causal Seeds from Inflation

    Get PDF
    Causal seed models, such as cosmological defects, generically predict a distinctly different structure to the CMB power spectrum than inflation, due to the behavior of the perturbations outside the horizon. We provide a general analysis of their causal generation from isocurvature initial conditions by analyzing the role of stress perturbations and conservation laws in the causal evolution. Causal stress perturbations tend to generate an isocurvature pattern of peak heights in the CMB spectrum and shift the first compression, i.e.~main peak, to smaller angular scales than in the inflationary case, unless the pressure and anisotropic stress fluctuations balance in such a way as to reverse the sense of gravitational interactions while also maintaining constant gravitational potentials. Aside from this case, these causal seed models can be cleanly distinguished from inflation by CMB experiments currently underway.Comment: 22pgs, revtex, 5 figs.; revision clarifies discussion of astro-ph/9604172, includes new supporting sections on assumptions and anisotropic stresses, and discusses astro-ph/9607109; main conclusions unchanged; supporting material at http://www.sns.ias.edu/~wh

    Improved W boson mass measurement with the D0 detector

    Get PDF
    We have measured the W boson mass using the D0 detector and a data sample of 82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays, where the electron is close to a boundary of a central electromagnetic calorimeter module. Such 'edge' electrons have not been used in any previous D0 analysis, and represent a 14% increase in the W boson sample size. For these electrons, new response and resolution parameters are determined, and revised backgrounds and underlying event energy flow measurements are made. When the current measurement is combined with previous D0 W boson mass measurements, we obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0 measurement is primarily due to the improved determination of the response parameters for non-edge electrons using the sample of Z bosons with non-edge and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table
    • …
    corecore