35,601 research outputs found

    Investing in Millennials

    Get PDF

    A new multidimensional, energy-dependent two-moment transport code for neutrino-hydrodynamics

    Full text link
    We present the new code ALCAR developed to model multidimensional, multi energy-group neutrino transport in the context of supernovae and neutron-star mergers. The algorithm solves the evolution equations of the 0th- and 1st-order angular moments of the specific intensity, supplemented by an algebraic relation for the 2nd-moment tensor to close the system. The scheme takes into account frame-dependent effects of order O(v/c) as well as the most important types of neutrino interactions. The transport scheme is significantly more efficient than a multidimensional solver of the Boltzmann equation, while it is more accurate and consistent than the flux-limited diffusion method. The finite-volume discretization of the essentially hyperbolic system of moment equations employs methods well-known from hydrodynamics. For the time integration of the potentially stiff moment equations we employ a scheme in which only the local source terms are treated implicitly, while the advection terms are kept explicit, thereby allowing for an efficient computational parallelization of the algorithm. We investigate various problem setups in one and two dimensions to verify the implementation and to test the quality of the algebraic closure scheme. In our most detailed test, we compare a fully dynamic, one-dimensional core-collapse simulation with two published calculations performed with well-known Boltzmann-type neutrino-hydrodynamics codes and we find very satisfactory agreement.Comment: 30 pages, 12 figures. Revised version: several additional comments and explanations, results remain unchanged. Accepted for publication in MNRA

    Three-Dimensional Core-Collapse Supernova Simulations with Multi-Dimensional Neutrino Transport Compared to the Ray-by-Ray-plus Approximation

    Full text link
    Self-consistent, time-dependent supernova (SN) simulations in three spatial dimensions (3D) are conducted with the Aenus-Alcar code, comparing, for the first time, calculations with fully multi-dimensional (FMD) neutrino transport and the ray-by-ray-plus (RbR+) approximation, both based on a two-moment solver with algebraic M1 closure. We find good agreement between 3D results with FMD and RbR+ transport for both tested grid resolutions in the cases of a 20 solar-mass progenitor, which does not explode with the employed simplified set of neutrino opacities, and of an exploding 9 solar-mass model. This is in stark contrast to corresponding axisymmetric (2D) simulations, which confirm previous claims that the RbR+ approximation can foster explosions in 2D in particular in models with powerful axial sloshing of the stalled shock due to the standing accretion shock instability (SASI). However, while local and instantaneous variations of neutrino fluxes and heating rates can still be considerably higher with RbR+ transport in 3D, the time-averaged quantities are very similar to FMD results because of the absence of a fixed, artificial symmetry axis that channels the flow. Therefore, except for stochastic fluctuations, the neutrino signals and the post-bounce evolution of 3D simulations with FMD and RbR+ transport are also very similar, in particular for our calculations with the better grid resolution. Higher spatial resolution has clearly a more important impact than the differences by the two transport treatments. Our results back up the use of the RbR+ approximation for neutrino transport in 3D SN modeling.Comment: 25 pages, 16 figures; referee comments included, new appendix added; accepted by Ap

    Discovery of large scale shock fronts correlated with the radio halo and radio relic in the A2163 galaxy cluster

    Full text link
    Imprints of galaxy cluster formation processes are visible in the intracluster medium and can arise in shock fronts, which are detectable via discontinuities in e.g. the gas temperature and density profiles. In this study, we investigate the X-ray properties of the intracluster gas and the radio morphology of the extraordinary cluster A2163. This cluster shows an irregular morphology in various wavelengths and has one of the most luminous and extended known radio halos. Additionally, it is one of the hottest clusters known. We analyze two Suzaku observations of A2163, one in the north-east (NE) and one in the south-west (SW) direction, and use archival XMM-Newton data to remove point sources in the field of view. To compare our findings in the X-ray regime with the radio emission, we obtain radio images of the cluster from an archival VLA observation at 20cm. We identify three shock fronts in A2163 in our spectral X-ray study. A clear shock front lies in the NE direction at a distance of 1.4Mpc from the center, with a Mach number of M=1.7−0.2+0.3M=1.7_{-0.2}^{+0.3}, estimated from the temperature discontinuity. This shock coincides with the position of a known radio relic. We identify two additional shocks in the SW direction, one with M=1.5−0.3+0.5M=1.5_{-0.3}^{+0.5} at a distance of 0.7Mpc, which is likely related to a cool core remnant, and a strong shock with M=3.2−0.7+0.6M=3.2_{-0.7}^{+0.6} at a distance of 1.3Mpc, which also closely matches the radio contours. The complex structure of A2163 as well as the different Mach numbers and shock velocities suggest a merging scenario with two unequal merging constituents, where two shock fronts emerged in an early stage of the merger and traveled outwards while an additional shock front developed in front of the merging cluster cores.Comment: 9 pages, 7 figures, accepted by A&

    Neutron-star merger ejecta as obstacles to neutrino-powered jets of gamma-ray bursts

    Full text link
    We present the first special relativistic, axisymmetric hydrodynamic simulations of black hole-torus systems (approximating general relativistic gravity) as remnants of binary-neutron star (NS-NS) and neutron star-black hole (NS-BH) mergers, in which the viscously driven evolution of the accretion torus is followed with self-consistent energy-dependent neutrino transport and the interaction with the cloud of dynamical ejecta expelled during the NS-NS merging is taken into account. The modeled torus masses, BH masses and spins, and the ejecta masses, velocities, and spatial distributions are adopted from relativistic merger simulations. We find that energy deposition by neutrino annihilation can accelerate outflows with initially high Lorentz factors along polar low-density funnels, but only in mergers with extremely low baryon pollution in the polar regions. NS-BH mergers, where polar mass ejection during the merging phase is absent, provide sufficiently baryon-poor environments to enable neutrino-powered, ultrarelativistic jets with terminal Lorentz factors above 100 and considerable dynamical collimation, favoring short gamma-ray bursts (sGRBs), although their typical energies and durations might be too small to explain the majority of events. In the case of NS-NS mergers, however, neutrino emission of the accreting and viscously spreading torus is too short and too weak to yield enough energy for the outflows to break out from the surrounding ejecta shell as highly relativistic jets. We conclude that neutrino annihilation alone cannot power sGRBs from NS-NS mergers.Comment: 7 pages, 4 figures, minor revisions compared to original version, accepted for publication in ApJ Letter

    Core-Collapse Supernovae: Reflections and Directions

    Full text link
    Core-collapse supernovae are among the most fascinating phenomena in astrophysics and provide a formidable challenge for theoretical investigation. They mark the spectacular end of the lives of massive stars and, in an explosive eruption, release as much energy as the sun produces during its whole life. A better understanding of the astrophysical role of supernovae as birth sites of neutron stars, black holes, and heavy chemical elements, and more reliable predictions of the observable signals from stellar death events are tightly linked to the solution of the long-standing puzzle how collapsing stars achieve to explode. In this article our current knowledge of the processes that contribute to the success of the explosion mechanism are concisely reviewed. After a short overview of the sequence of stages of stellar core-collapse events, the general properties of the progenitor-dependent neutrino emission will be briefly described. Applying sophisticated neutrino transport in axisymmetric (2D) simulations with general relativity as well as in simulations with an approximate treatment of relativistic effects, we could find successful neutrino-driven explosions for a growing set of progenitor stars. First results of three-dimensional (3D) models have been obtained, and magnetohydrodynamic simulations demonstrate that strong initial magnetic fields in the pre-collapse core can foster the onset of neutrino-powered supernova explosions even in nonrotating stars. These results are discussed in the context of the present controversy about the value of 2D simulations for exploring the supernova mechanism in realistic 3D environments, and they are interpreted against the background of the current disagreement on the question whether the standing accretion shock instability (SASI) or neutrino-driven convection is the crucial agency that supports the onset of the explosion.Comment: 36 pages, 20 figures (43 eps files); submitted to Progress of Theoretical and Experimental Physics (PTEP

    Charge Fluctuations in the Edge States of N-S hybrid Nano-Structures

    Full text link
    In this work we show how to calculate the equilibrium and non-equilibrium charge fluctuations in a gated normal mesoscopic conductor which is attached to one normal lead and one superconducting lead. We then consider an example where the structure is placed in a high magnetic field, such that the transport is dominated by edge states. We calculate the equilibrium and non-equilibrium charge fluctuations in the gate, for a single edge state, comparing our results to those for the same system, but with two normal leads. We then consider the specific example of a quantum point contact and calculate the charge fluctuations in the gate for more than one edge state.Comment: 4 pages with 1 figure. In published version the high magnetic field dynamics of the holes is treated incorrectly. An erratum is in preparatio

    Nondestructive testing techniques used in analysis of honeycomb structure bond strength

    Get PDF
    DOT /Driver-Displacement Oriented Transducer/, applicable to both lap shear type application and honeycomb sandwich structures, measures the displacement of the honeycomb composite face sheet. It incorporates an electromagnetic driver and a displacement measuring system into a single unit to provide noncontact bond strength measurements
    • …
    corecore