2,078 research outputs found

    Leaf Anatomy and CO2 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)

    Get PDF
    This is the publisher's official version. It is also available electronically from: http://www.jstor.org/stable/2995609.The relationship between leaf anatomy, specifically the percent of leaf volume occupied by waterstorage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C 0 2 exchange through respiration only, may be causally related to the recently observed phenomenon of C 0 2 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C 0 2 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C 0 2 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C 0 2 from the tissue hydrenchyma

    Non-Edible Plant Oils as New Sources for Biodiesel Production

    Get PDF
    Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi) and jatropha (jatropha curcas, L.) are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME) from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1% free FA, 84.43% triglycerides, 4.88% sterol and 1.59% others. Jatropha oil contains approximately 14% free FA, approximately 5% higher than soapnut oil. Soapnut oil biodiesel contains approximately 85% unsaturated FA while jatropha oil biodiesel was found to have approximately 80% unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97% conversion to FAME was achieved for both soapnut and jatropha oil

    Gene expression profile of cervical tissue compared to exfoliated cells: Impact on biomarker discovery

    Get PDF
    BACKGROUND: Exfoliated cervical cells are used in cytology-based cancer screening and may also be a source for molecular biomarkers indicative of neoplastic changes in the underlying tissue. However, because of keratinization and terminal differentiation it is not clear that these cells have an mRNA profile representative of cervical tissue, and that the profile can distinguish the lesions targeted for early detection. RESULTS: We used whole genome microarrays (25,353 unique genes) to compare the transcription profiles from seven samples of normal exfoliated cells and one cervical tissue. We detected 10,158 genes in exfoliated cells, 14,544 in the tissue and 7320 genes in both samples. For both sample types the genes grouped into the same major gene ontology (GO) categories in the same order, with exfoliated cells, having on average 20% fewer genes in each category. We also compared microarray results of samples from women with cervical intraepithelial neoplasia grade 3 (CIN3, n = 15) to those from age and race matched women without significant abnormalities (CIN1, CIN0; n = 15). We used three microarray-adapted statistical packages to identify differential gene expression. The six genes identified in common were two to four fold upregulated in CIN3 samples. One of these genes, the ubiquitin-conjugating enzyme E2 variant 1, participates in the degradation of p53 through interaction with the oncogenic HPV E6 protein. CONCLUSION: The findings encourage further exploration of gene expression using exfoliated cells to identify and validate applicable biomarkers. We conclude that the gene expression profile of exfoliated cervical cells partially represents that of tissue and is complex enough to provide potential differentiation between disease and non-disease

    Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitamin D insufficiency is common in hospitalized patients. Recent evidence suggests that vitamin D may enhance the innate immune response by induction of cathelicidin (LL-37), an endogenous antimicrobial peptide produced by macrophages and neutrophils. Thus, the relationship between vitamin D status and LL-37 production may be of importance for host immunity, but little data is available on this subject, especially in the setting of human sepsis syndrome and other critical illness.</p> <p>Methods</p> <p>Plasma concentrations of 25-hydroxyvitamin D (25(OH)D), vitamin D binding protein (DBP) and LL-37 in critically ill adult subjects admitted to intensive care units (ICUs) with sepsis and without sepsis were compared to healthy controls.</p> <p>Results</p> <p>Critically ill subjects had significantly lower plasma 25(OH)D concentrations compared to healthy controls. Mean plasma LL-37 levels were significantly lower in critically ill subjects compared to healthy controls. Vitamin D binding protein levels in plasma were significantly lower in critically ill subjects with sepsis compared to critically ill subjects without sepsis. There was a significant positive association between circulating 25(OH)D and LL-37 levels.</p> <p>Conclusion</p> <p>This study demonstrates an association between critical illness and lower 25(OH)D and DBP levels in critically ill patients as compared to healthy controls. It also establishes a positive association between vitamin D status and plasma LL-37, which suggests that systemic LL-37 levels may be regulated by vitamin D status. Optimal vitamin D status may be important for innate immunity especially in the setting of sepsis. Further invention studies to examine this association are warranted.</p

    A pathway for Parkinson's Disease LRRK2 kinase to block primary cilia and Sonic hedgehog signaling in the brain

    Get PDF
    Parkinson’s disease-associated LRRK2 kinase phosphorylates multiple Rab GTPases, including Rab8A and Rab10. We show here that LRRK2 kinase interferes with primary cilia formation in cultured cells, human LRRK2 G2019S iPS cells and in the cortex of LRRK2 R1441C mice. Rab10 phosphorylation strengthens its intrinsic ability to block ciliogenesis by enhancing binding to RILPL1. Importantly, the ability of LRRK2 to interfere with ciliogenesis requires both Rab10 and RILPL1 proteins. Pathogenic LRRK2 influences the ability of cells to respond to cilia-dependent, Hedgehog signaling as monitored by Gli1 transcriptional activation. Moreover, cholinergic neurons in the striatum of LRRK2 R1441C mice show decreased ciliation, which will decrease their ability to sense Sonic hedgehog in a neuro-protective circuit that supports dopaminergic neurons. These data reveal a molecular pathway for regulating cilia function that likely contributes to Parkinson’s disease-specific pathology

    Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis

    Get PDF
    We previously reported that Parkinson's disease (PD) kinase LRRK2 phosphorylates a subset of Rab GTPases on a conserved residue in their switch-II domains (Steger et al., 2016) (PMID: 26824392). Here, we systematically analyzed the Rab protein family and found 14 of them (Rab3A/B/C/D, Rab5A/B/C, Rab8A/B, Rab10, Rab12, Rab29, Rab35 and Rab43) to be specifically phosphorylated by LRRK2, with evidence for endogenous phosphorylation for ten of them (Rab3A/B/C/D, Rab8A/B, Rab10, Rab12, Rab35 and Rab43). Affinity enrichment mass spectrometry revealed that the primary ciliogenesis regulator, RILPL1 specifically interacts with the LRRK2-phosphorylated forms of Rab8A and Rab10, whereas RILPL2 binds to phosphorylated Rab8A, Rab10, and Rab12. Induction of primary cilia formation by serum starvation led to a two-fold reduction in ciliogenesis in fibroblasts derived from pathogenic LRRK2-R1441G knock-in mice. These results implicate LRRK2 in primary ciliogenesis and suggest that Rab-mediated protein transport and/or signaling defects at cilia may contribute to LRRK2-dependent pathologies
    corecore