2,444 research outputs found

    Yeasts as models in cell biology

    Get PDF

    Dynamics of the Formin For3p in Actin Cable Assembly

    Get PDF
    SummaryBackgroundFormins are a conserved family of actin nucleators responsible for the assembly of diverse actin structures such as cytokinetic rings and filopodia. In the fission yeast Schizosaccharomyces pombe, the formin for3p is necessary for the formation of actin cables, which are bundles of short parallel actin filaments that regulate cell polarity. These filaments are largely organized with their barbed ends facing the cell tip, where for3p is thought to function in their assembly.ResultsHere, using a functional for3p-3GFP fusion expressed at endogenous levels, we find that for3p localizes to small dots that appear transiently at cell tips and then move away on actin cables at a rate of 0.3 μm/s. These movements were dependent on the continuous assembly of actin in cables, on the ability of for3p to bind actin within its FH2 domain, and on profilin and bud6p, two formin binding proteins that promote formin activity. Bud6p transiently colocalizes with for3p at the cell tip and stays behind at the cell tip when for3p detaches.ConclusionsThese findings suggest a new model for actin cable assembly: a for3p particle is activated and promotes the assembly of a short actin filament at the cell tip for only seconds. For3p and the actin filament may then be released from the cell tip and carried passively into the cell interior by retrograde flow of actin filaments in the cable. These studies reveal a complex and dynamic cycle of formin regulation and actin cable assembly in vivo

    Cell polarization in budding and fission yeasts

    Get PDF
    Polarization is a fundamental cellular property, which is essential for the function of numerous cell types. Over the past three to four decades, research using the best-established yeast systems in cell biological research, Saccharomyces cerevisiae (or budding yeast) and Schizosaccharomyces pombe (or fission yeast), has brought to light fundamental principles governing the establishment and maintenance of a polarized, asymmetric state. These two organisms, though both ascomycetes, are evolutionarily very distant and exhibit distinct shapes and modes of growth. In this review, we compare and contrast the two systems. We first highlight common cell polarization pathways, detailing the contribution of Rho GTPases, the cytoskeleton, membrane trafficking, lipids, and protein scaffolds. We then contrast the major differences between the two organisms, describing their distinct strategies in growth site selection and growth zone dimensions and compartmentalization, which may be the basis for their distinct shape

    Normal metal tunnel junction-based superconducting quantum interference proximity transistor: the N-SQUIPT

    Full text link
    We report the fabrication and characterization of an alternative design for a superconducting quantum interference proximity transistor (SQUIPT) based on a normal metal (N) probe. The absence of direct Josephson coupling between the proximized metal nanowire and the N probe allows us to observe the full modulation of the wire density of states around zero voltage and current \textit{via} the application of an external magnetic field. This results into a drastic suppression of power dissipation which can be as low as a few 1017\sim 10^{-17} W. In this context the interferometer allows an improvement of up to four orders of magnitude with respect to earlier SQUIPT designs, and makes it ideal for extra-low power cryogenic applications. In addition, the N-SQUIPT has been recently predicted to be the enabling candidate for the implementation of coherent caloritronic devices based on proximity effect.Comment: 5 pages, 4 color figure

    PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus

    Get PDF
    Previous microarray analyses have shown a key role for the two-component system PhoBR (SYNW0947, SYNW0948) in the regulation of P transport and metabolism in the marine cyanobacterium Synechococcus sp. WH8102. However, there is some evidence that another regulator, SYNW1019 (PtrA), probably under the control of PhoBR, is involved in the response to P depletion. PtrA is a member of the cAMP receptor protein transcriptional regulator family that shows homology to NtcA, the global nitrogen regulator in cyanobacteria. To define the role of this regulator, we constructed a mutant by insertional inactivation and compared the physiology of wild-type Synechcococcus sp. WH8102 with the ptrA mutant under P-replete and P-stress conditions. In response to P stress the ptrA mutant failed to upregulate phosphatase activity. Microarrays and quantitative RT-PCR indicate that a subset of the Pho regulon is controlled by PtrA, including two phosphatases, a predicted phytase and a gene of unknown function psip1 (SYNW0165), all of which are highly upregulated during P limitation. Electrophoretic mobility shift assays indicate binding of overexpressed PtrA to promoter sequences upstream of the induced genes. This work suggests a two-tiered response to P depletion in this strain, the first being PhoB-dependent induction of high-affinity PO4 transporters, and the second the PtrA-dependent induction of phosphatases for scavenging organic P. The levels of numerous other transcripts are also directly or indirectly influenced by PtrA, including those involved in cell-surface modification, metal uptake, photosynthesis, stress responses and other metabolic processes, which may indicate a wider role for PtrA in cellular regulation in marine picocyanobacteria

    Dynamical response of the southwestern Laurentide Ice Sheet to rapid Bølling–Allerød warming

    Get PDF
    The shift in climate that occurred between the Last Glacial Maximum (LGM) and the Early Holocene (ca. 18–12 kyr BP) displayed rates of temperature increase similar to present-day warming trends. The most rapid recorded changes in temperature occurred during the abrupt climate oscillations known as the Bølling–Allerød interstadial (14.7–12.9 kyr BP) and the Younger Dryas stadial (12.9–11.7 kyr BP). Reconstructing ice sheet dynamics during these climate oscillations provides the opportunity to assess long-term ice sheet evolution in reaction to a rapidly changing climate. Here, we use glacial geomorphological inversion methods (flowsets) to reconstruct the ice flow dynamics and the marginal retreat pattern of the southwestern sector of the Laurentide Ice Sheet (SWLIS). We combine our reconstruction with a recently compiled regional deglaciation chronology to depict ice flow dynamics that encompass the time period from pre-LGM to the Early Holocene. Our reconstruction portrays three macroscale reorganizations in the orientation and dynamics of ice streaming followed by regional deglaciation associated with rapid warming during the Bølling–Allerød interstadial. Initial westward flow is documented, likely associated with an early set of ice streams that formed during the advance to the LGM. During the LGM ice streaming displays a dominant north to south orientation. Ice sheet thinning at ∼15 ka is associated with a macroscale reorganization in ice stream flow, with a complex of ice streams recording south-eastward flow. A second macroscale reorganization in ice flow is then observed at ∼14 ka, in which southwestern ice flow is restricted to the Hay, Peace, Athabasca, and Churchill river lowlands. Rates of ice sheet retreat then slowed considerably during the Younger Dryas stadial; at this time, the ice margin was situated north of the Canadian Shield boundary and ice flow continued to be sourced from the northeast. Resulting from these changes in ice sheet dynamics, we recognize a three-part pattern of deglacial landform zonation within the SWLIS characterized by active ice margin recession, stagnation and downwasting punctuated by local surging (terrestrial ice sheet collapse): the outer deglacial zone contains large recessional moraines aligned with the direction of active ice margin retreat; the intermediate deglacial zone contains large regions of hummocky and stagnation terrain, in some areas crosscut by the signature of local surges, reflecting punctuated stagnation and downwasting; and the inner deglacial zone contains inset recessional moraines demarcating progressive regional ice margin retreat. We attribute these macroscale changes in ice flow geometry and associated deglacial behaviour to external climatic controls during the Bølling–Allerød and Younger Dryas but also recognize the role of internal (glaciological, lithological and topographic) controls in SWLIS dynamics

    Dynamic visits of cortical structures probe for cell size.

    Get PDF
    All cells show size homeostasis owing to coordination of division with growth. In this issue, Allard et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201709171) establish that transient inhibitory visits of a negative regulator of Cdk1 to cortical oligomeric platforms increase in number and duration with cell growth, suggesting how Cdk1 activation is coupled to cell size

    Pom1 gradient buffering through intermolecular auto-phosphorylation.

    Get PDF
    Concentration gradients provide spatial information for tissue patterning and cell organization, and their robustness under natural fluctuations is an evolutionary advantage. In rod-shaped Schizosaccharomyces pombe cells, the DYRK-family kinase Pom1 gradients control cell division timing and placement. Upon dephosphorylation by a Tea4-phosphatase complex, Pom1 associates with the plasma membrane at cell poles, where it diffuses and detaches upon auto-phosphorylation. Here, we demonstrate that Pom1 auto-phosphorylates intermolecularly, both in vitro and in vivo, which confers robustness to the gradient. Quantitative imaging reveals this robustness through two system's properties: The Pom1 gradient amplitude is inversely correlated with its decay length and is buffered against fluctuations in Tea4 levels. A theoretical model of Pom1 gradient formation through intermolecular auto-phosphorylation predicts both properties qualitatively and quantitatively. This provides a telling example where gradient robustness through super-linear decay, a principle hypothesized a decade ago, is achieved through autocatalysis. Concentration-dependent autocatalysis may be a widely used simple feedback to buffer biological activities

    New constraints on Lyman-α opacity with a sample of 62 quasars at z > 5.7

    Get PDF
    We present measurements of the mean and scatter of the IGM Lyman-{\alpha} opacity at 4.9 5.7, the largest sample assembled at these redshifts to date by a factor of two. The sample size enables us to sample cosmic variance at these redshifts more robustly than ever before. The spectra used here were obtained by the SDSS, DES-VHS and SHELLQs collaborations, drawn from the ESI and X-Shooter archives, reused from previous studies or observed specifically for this work. We measure the effective optical depth of Lyman-{\alpha} in bins of 10, 30, 50 and 70 cMpc h-1, construct cumulative distribution functions under two treatments of upper limits on flux and explore an empirical analytic fit to residual Lyman-{\alpha} transmission. We verify the consistency of our results with those of previous studies via bootstrap re-sampling and confirm the existence of tails towards high values in the opacity distributions, which may persist down to z = 5.2. Comparing our results with predictions from cosmological simulations, we find further strong evidence against models that include a spatially uniform ionizing background and temperature-density relation. We also compare to IGM models that include either a fluctuating UVB dominated by rare quasars or temperature fluctuations due to patchy reionization. Although both models produce better agreement with the observations, neither fully captures the observed scatter in IGM opacity. Our sample of 62 z > 5.7 quasar spectra opens many avenues for future study of the reionisation epoch
    corecore