2,756 research outputs found

    Simultaneous QCD analysis of diffractive and inclusive DIS data

    Full text link
    We perform a NLO QCD analysis of deep-inelastic scattering data, in which we account for absorptive corrections. These corrections are determined from a simultaneous analysis of diffractive deep-inelastic data. The absorptive effects are found to enhance the size of the gluon distribution at small x, such that a negative input gluon distribution at Q^2 = 1 GeV^2 is no longer required. We discuss the problem that the gluon distribution is valence-like at low scales, whereas the sea quark distribution grows with decreasing x. Our study hints at the possible importance of power corrections for Q^2 \simeq 1--2 GeV^2.Comment: 11 pages, 3 figures. Version published as a Rapid Communication in Phys. Rev.

    Diffractive parton distributions from H1 data

    Get PDF
    We analyse the latest H1 large rapidity gap data to obtain diffractive parton distributions, using a procedure based on perturbative QCD, and compare them with distributions obtained from the simplified Regge factorisation type of analysis. The diffractive parton densities and structure functions are made publically available.Comment: 9 pages, 2 figures. Fortran code for diffractive parton densities and structure functions can be found at http://durpdg.dur.ac.uk/hepdata/mrw.html . Version to appear in Phys. Lett. B; final paragraph added, with curves from H1 incl.+dijet fit added to Fig.

    Charmonium production at neutrino factories

    Get PDF
    At existing and planned neutrino factories (high energy and high intensity neutrino beam facilities) precision studies of QCD in neutrino-nucleon interactions are a realistic opportunity. We investigate charmonium production in fixed target neutrino experiments. We find that J/ψJ/\psi production in neutrino-nucleon collision is dominated by the color octet 3S1^3S_1 NRQCD matrix element in a neutral current process, which is not accessible in photo or leptoproduction. Neutrino experiments at a future Muon Collider will acquire sufficient event rate to accurately measure color octet matrix element contributions. The currently running high energy neutrino experiments, NOMAD and NuTeV could also observe several such events.Comment: 13 pages Latex, with five embedded eps figures. Cosmetic fixups in the figures, otherwise unchange

    Forward Physics with Rapidity Gaps at the LHC

    Get PDF
    A rapidity gap program with great potential can be realized at the Large Hadron Collider, LHC, by adding a few simple forward shower counters (FSCs) along the beam line on both sides of the main central detectors, such as CMS. Measurements of single diffractive cross sections down to the lowest masses can be made with an efficient level-1 trigger. Exceptionally, the detectors also make feasible the study of Central Diffractive Excitation, and in particular the reaction g + g to g + g, in the color singlet channel, effectively using the LHC as a gluon-gluon collider.Comment: 15 pages, 11 figure

    Design and Optimisation of a Microwave Reactor for Kilo-Scale Polymer Synthesis

    Get PDF
    Current industrial production of polymer resins is generally undertaken in large multi-tonne stirred tank reactors. These are characterised by relatively slow heating and cooling cycles, resulting in long vessel cycle times and extended production campaigns. In this work we present a design for a hybrid microwave/oil jacket proof of concept system capable of producing up to 4.1 kg of polymer resin per batch. By exploiting rapid volumetric heating effects of microwave energy at 2.45GHz, we have optimised the synthetic regime, such that a 3.7 kg batch of polyester resin pre-polymer can be made in only 8 hours 20 minutes, with higher molecular weight (Mn 2,100) compared to the conventional process taking 22 hours 15 minutes (Mn 1,200), yielding an increase in synthesis rate of at least 265. The increase in polymer molecular weight also suggests a higher conversion was achieved over a shorter time scale

    An Optimal Protocol to Analyze the Rat Spinal Cord Proteome

    Get PDF
    Since the function of the spinal cord depends on the proteins found there, better defing the normal Spinal Cord Proteome is an important and challenging task. Although brain and cerebrospinal fluid samples from patients with different central nervous system (CNS) disorders have been studied, a thorough examination of specific spinal cord proteins and the changes induced by injury or associated to conditions such as neurodegeneration, spasticity and neuropathies has yet to be performed. In the present study, we aimed to describe total protein content in the spinal cord of healthy rats, employing different proteomics tools. Accordingly, we have developed a fast, easy, and reproducible sequential protocol for protein extraction from rat spinal cords. We employed conventional two dimensional electrophoresis (2DE) in different pH ranges (eg. 4–7, 3–11 NL) combined with identification by mass spectrometry (MALDI-TOF/TOF), as well as first dimension protein separation combined with Liquid Chromatography Mass Spectrometry/Mass Spectrometry (LC-MS/MS) to maximise the benefits of this technology. The value of these techniques is demonstrated here by the identification of several proteins known to be associated with neuroglial structures, neurotransmission, cell survival and nerve growth in the central nervous system. Furthermore this study identified many spinal proteins that have not previously been described in the literature and which may play an important role as either sensitive biomarkers of dysfunction or of recovery after Spinal Cord Injury

    b \bar b b\bar b production in proton-nucleus collisions at the LHC

    Full text link
    A sizable rate of events, with several pairs of bb-quarks produced contemporarily by multiple parton interactions, may be expected at very high energies as a consequence of the large parton luminosities. The production rates are further enhanced in hadron-nucleus reactions, which may represent a convenient tool to study the phenomenon. We compare the different contributions to bbˉbbˉb{\bar b}b{\bar b} production, due to single and double parton scatterings, in collisions of protons with nuclei at the CERN-LHC.Comment: 13 pages, 4 figure

    Design and optimisation of a microwave reactor for kilo-scale polymer synthesis

    Get PDF
    Current industrial production of polymer resins is generally undertaken in large multi-tonne stirred tank reactors. These are characterised by relatively slow heating and cooling cycles, resulting in long vessel cycle times and extended production campaigns. In this work we present a design for a hybrid microwave/oil jacket proof of concept system capable of producing up to 4.1?kg of polymer resin per batch. By exploiting rapid volumetric heating effects of microwave energy at 2.45?GHz, we have optimised the synthetic regime, such that a 3.7?kg batch of polyester resin pre-polymer can be made in only 8?h 20?min, with higher molecular weight (Mn 2100) compared to the conventional process taking 22?h 15?min (Mn 1200), yielding an increase in synthesis rate of at least 265%. The increase in polymer molecular weight also suggests a higher conversion was achieved over a shorter time scale

    The molecular basis of glucose galactose malabsorption in a large Swedish pedigree

    Get PDF
    Glucose-galactose malabsorption (GGM) is due to mutations in the gene coding for the intestinal sodium glucose cotransporter SGLT1 (SLC5A1). Here we identify the rare variant Gln457Arg (Q457R) in a large pedigree of patients in the Vasterbotten County in Northern Sweden with the clinical phenotype of GGM. The functional effect of the Q457R mutation was determined in protein expressed in Xenopus laevis oocytes using biophysical and biochemical methods. The mutant failed to transport the specific SGLT1 sugar analog alpha-methyl-D-glucopyranoside (alphaMDG). Q457R SGLT1 was synthesized in amounts comparable to the wild-type (WT) transporter. SGLT1 charge measurements and freeze-fracture electron microscopy demonstrated that the mutant protein was inserted into the plasma membrane. Electrophysiological experiments, both steady-state and presteady-state, demonstrated that the mutant bound sugar with an affinity lower than the WT transporter. Together with our previous studies on Q457C and Q457E mutants, we established that the positive charge on Q457R prevented the translocation of sugar from the outward-facing to inward-facing conformation. This is contrary to other GGM cases where missense mutations caused defects in trafficking SGLT1 to the plasma membrane. Thirteen GGM patients are now added to the pedigree traced back to the late 17th century. The frequency of the Q457R variant in Vasterbotten County genomes, 0.0067, is higher than in the general Swedish population, 0.0015..

    E1 amplitudes, lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium

    Get PDF
    The results of ab initio calculation of E1 amplitudes, lifetimes,and polarizabilities for several low-lying levels of ytterbium are reported. The effective Hamiltonian for the valence electrons has been constructed in the frame of CI+MBPT method and solutions of many electron equation are found.Comment: 11 pages, submitted to Phys.Rev.
    corecore