4,081 research outputs found

    Process monitoring during AlNxOy deposition by reactive magnetron sputtering and correlation with the film’s properties

    Get PDF
    In this work, AlNxOy thin films were deposited by reactive magnetron sputtering, using an aluminum target and an Ar/(N2+O2) atmosphere. The DC magnetron discharge parameters during the deposition process were investigated by optical emission spectroscopy and a plasma floating probe was used. The discharge voltage, the electron temperature, the ion flux and the optical emission lines were recorded for different reactive gas flows, near the target and close to the substrate. This information was correlated with the structural features of the deposits as a first step in the development of a system to control the structure and properties of the films during reactive magnetron sputtering. As the target becomes poisoned, the discharge voltage suffers an important variation, due to the modification of the secondary electron emission coefficient of the target, which is also supported by the evolution of the electron temperature and ion flux to the target. The sputtering yield of the target was also affected, leading to a reduction of the amount of Al atoms arriving to the substrate, according to optical emission spectroscopy results for Al emission line intensity. This behavior, together with the increase of non-metallic elements in the films, allowed obtaining different microstructures, over a wide range of compositions, which induced different electrical and optical responses of films.This research was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2011. J. Borges also acknowledges FCT financial support under PhD grant NÂș SFRH/BD/47118/2008 (financiado por POPH – QREN – Tipologia 4.1 – Formação Avançada, comparticipado pelo Fundo Social Europeu e por fundos nacionais do MCTES)

    Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion in dogs

    Get PDF
    Postreperfusion regional myocardial dysfunction may be associated with depletion of high energy phosphate compounds during ischemia and with their relatively slow repletion during reperfusion. However, few studies have correlated relatively rapid changes in regional myocardial function (sonomicrometers) and blood flow (microspheres) with high energy phosphate concentrations measured using phosphorus-31 nuclear magnetic resonance spectroscopy in intact large animal models of regional myocardial ischemia. The left anterior descending coronary artery of mongrel dogs was abruptly occluded for 17.1 ± 1.9 minutes and then completely released; measurements were made for an additional 22 minutes. Transmural blood flow decreased from 1.07 ± 0.25 to 0.25 ± 0.10 ml/(min × g) and holosystolic expansion was observed in all dogs (segmental systolic shortening decreased from 9.3 ± 3.7 to −6.3 ± 6.0%). Phosphocreatine (PCr) measured during 4.4 minute sampling intervals decreased to steady state within the first sampling period after occlusion and was 45.9 ± 17.0% of control at the end of the occlusion, whereas beta-adenosine triphosphate (beta-ATP) reached its lowest level early after reperfusion (72.7 ± 13.3% of control). The ratio of PCr to inorganic phosphate (Pi) decreased during the occlusion (3.34 ± 0.75 versus 1.01 ± 0.61) but returned to control level early during reperfusion. The ratio of PCr to beta-ATP also decreased during coronary occlusion (2.16 ± 0.39 versus 1.29 ± 0.39) but did not return to control level during reperfusion.Significant correlations were observed between the intensity of ischemia (reduced blood flow) and reductions in regional contractile function, PCr, beta-ATP, myocardial pH and the increase in Pi during the coronary occlusion. Also during ischemia, there were significant correlations between regional contractile function and both myocardial pH and Pi. PCr returned to control level rapidly after reperfusion (95.9 ± 13.2% of control in less than 5 minutes of reperfusion) whereas beta-ATP recovered only partially after 22 minutes (80.0 ± 17.5% of control). The correlation between the fraction of control beta-ATP and the fraction of control regional function at this time was r = 0.84 (p = 0.017).These results demonstrate metabolic correlates to regional myocardial ischemia in an intact dog model using phosphorus-31 spectroscopy. Additionally during reperfusion, beta-ATP, but not PCr, could be associated with the recovery of regional segmental contractile function

    Use of cumulative incidence of novel influenza A/H1N1 in foreign travelers to estimate lower bounds on cumulative incidence in Mexico

    Get PDF
    Background: An accurate estimate of the total number of cases and severity of illness of an emerging infectious disease is required both to define the burden of the epidemic and to determine the severity of disease. When a novel pathogen first appears, affected individuals with severe symptoms are more likely to be diagnosed. Accordingly, the total number of cases will be underestimated and disease severity overestimated. This problem is manifest in the current epidemic of novel influenza A/H1N1. Methods and Results: We used a simple approach to leverage measures of incident influenza A/H1N1 among a relatively small and well observed group of US, UK, Spanish and Canadian travelers who had visited Mexico to estimate the incidence among a much larger and less well surveyed population of Mexican residents. We estimate that a minimum of 113,000 to 375,000 cases of novel influenza A/H1N1 have occurred in Mexicans during the month of April, 2009. Such an estimate serves as a lower bound because it does not account for underreporting of cases in travelers or for nonrandom mixing between Mexican residents and visitors, which together could increase the estimates by more than an order of magnitude. Conclusions: We find that the number of cases in Mexican residents may exceed the number of confirmed cases by two to three orders of magnitude. While the extent of disease spread is greater than previously appreciated, our estimate suggests that severe disease is uncommon since the total number of cases is likely to be much larger than those of confirmed cases

    Small behavioral adaptations enable more effective prey capture by producing 3D-structured spider threads

    Get PDF
    Spiders are known for producing specialized fibers. The radial orb-web, for example, contains tough silk used for the web frame and the capture spiral consists of elastic silk, able to stretch when prey impacts the web. In concert, silk proteins and web geometry affects the spider’s ability to capture prey. Both factors have received considerable research attention, but next to no attention has been paid to the influence of fiber processing on web performance. Cribellate spiders produce a complex fiber alignment as their capture threads. With a temporally controlled spinneret movement, they connect different fibers at specific points to each other. One of the most complex capture threads is produced by the southern house spider, Kukulcania hibernalis (Filistatidae). In contrast to the so far characterized linear threads of other cribellate spiders, K. hibernalis spins capture threads in a zigzag pattern due to a slightly altered spinneret movement. The resulting more complex fiber alignment increased the thread’s overall ability to restrain prey, probably by increasing the adhesion area as well as its extensibility. Kukulcania hibernalis' cribellate silk perfectly illustrates the impact of small behavioral differences on the thread assembly and, thus, of silk functionality.Fil: Grannemann, Caroline C. F.. Rwth Aachen University; AlemaniaFil: Meyer, Marcos. Rwth Aachen University; AlemaniaFil: Reinhardt, Marian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Herberstein, Marie E.. Macquarie University; AustraliaFil: Joel, Anna Christin. Macquarie University; Australia. Rwth Aachen University; Alemani

    The heats of formation of the haloacetylenes XCCY [X, Y = H, F, Cl]: basis set limit ab initio results and thermochemical analysis

    Full text link
    The heats of formation of haloacetylenes are evaluated using the recent W1 and W2 ab initio computational thermochemistry methods. These calculations involve CCSD and CCSD(T) coupled cluster methods, basis sets of up to spdfgh quality, extrapolations to the one-particle basis set limit, and contributions of inner-shell correlation, scalar relativistic effects, and (where relevant) first-order spin-orbit coupling. The heats of formation determined using W2 theory are: \hof(HCCH) = 54.48 kcal/mol, \hof(HCCF) = 25.15 kcal/mol, \hof(FCCF) = 1.38 kcal/mol, \hof(HCCCl) = 54.83 kcal/mol, \hof(ClCCCl) = 56.21 kcal/mol, and \hof(FCCCl) = 28.47 kcal/mol. Enthalpies of hydrogenation and destabilization energies relative to acetylene were obtained at the W1 level of theory. So doing we find the following destabilization order for acetylenes: FCCF >> ClCCF >> HCCF >> ClCCCl >> HCCCl >> HCCH. By a combination of W1 theory and isodesmic reactions, we show that the generally accepted heat of formation of 1,2-dichloroethane should be revised to -31.8±\pm0.6 kcal/mol, in excellent agreement with a very recent critically evaluated review. The performance of compound thermochemistry schemes such as G2, G3, G3X and CBS-QB3 theories has been analyzed.Comment: Mol. Phys., in press (E. R. Davidson issue

    Electrical properties of AlNxOy thin films prepared by reactive magnetron sputtering

    Get PDF
    Direct current magnetron sputtering was used to produce AlNxOy thin films, using an aluminum target, argon and a mixture of N2+O2 (17:3) as reactive gases. The partial pressure of the reactive gas mixture was increased, maintaining the discharge current constant. Within the two identified regimes of the target (metallic and compound), four different tendencies for the deposition rate were found and a morphological evolution from columnar towards cauliflower-type, ending up as dense and featureless-type films. The structure was found to be Al-type (face centered cubic) and the structural characterization carried out by X-ray 2 diffraction and transmission electron microscopy suggested the formation of an aluminumbased polycrystalline phase dispersed in an amorphous aluminum oxide/nitride (or oxynitride) matrix. This type of structure, composition, morphology and grain size, were found to be strongly correlated with the electrical response of the films, which showed a gradual transition between metallic-like responses towards semiconducting and even insulating-type behaviors. A group of films with high aluminum content revealed a sharp decrease of the temperature coefficient of resistance (TCR) as the concentration ratio of non-metallic/aluminum atomic ratio increased. Another group of samples, where the non-metallic content became more important, revealed a smooth transition between positive and negative values of TCR. In order to test whether the oxynitride films have a unique behavior or simply a transition between the typical responses of aluminum and of those of the correspondent nitride and oxide, the electrical properties of the ternary oxynitride system were compared with AlNx and AlOy systems, prepared in similar conditions.This research is sponsored by FEDER funds through the program COMPETE-Programa Operacional Factores de Competitividade, by the national funds through FCT-Fundação para a CiĂȘncia e a Tecnologia, under the project PTDC/CTM-NAN/112574/2009 and Programa Pessoa 2010/2011 Cooperação Portugal/França, Proc.Âș 441.00, Project“COLOURCLUSTER”. J. Borges also acknowledges FCT financial support under PhD grant no. SFRH/BD/47118/2008

    Measurement of competing pathways in a shock-induced phase transition in zirconium by femtosecond diffraction

    Full text link
    The traditional picture of solid-solid phase transformations assumes an ordered parent phase transforms into an ordered daughter phase via a single unique pathway. Zirconium and its prototypical phase transition from hexagonal close-packed (hcp) to simple hexagonal (hex-3) structure has generated considerable controversy over several decades regarding which mechanism mediates the transformation. However, a lack of in situ measurements over the relevant atomistic timescales has hindered our ability to identify the true pathway. In this study, we exploit femtosecond X-ray diffraction coupled with nanosecond laser compression to give unprecedented insights into the complexities of how materials transform at the lattice level. We observe single-crystal zirconium changing from hcp to a hex-3 structure via not one but three competing pathways simultaneously. Concurrently, we also observe a broad diffuse background underlying the sharp Bragg diffraction during the transition. We corroborate our observation of the diffuse signal with multimillion-atom molecular dynamics simulations using a machine-learned interatomic potential. Our study demonstrates that the traditional mechanistic view of transitions may fail for even an elemental metal and that the mechanisms by which materials transform are far more intricate than generally thought

    Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels.

    Get PDF
    Vascular smooth muscle cells (VSMCs) show pronounced heterogeneity across and within vascular beds, with direct implications for their function in injury response and atherosclerosis. Here we combine single-cell transcriptomics with lineage tracing to examine VSMC heterogeneity in healthy mouse vessels. The transcriptional profiles of single VSMCs consistently reflect their region-specific developmental history and show heterogeneous expression of vascular disease-associated genes involved in inflammation, adhesion and migration. We detect a rare population of VSMC-lineage cells that express the multipotent progenitor marker Sca1, progressively downregulate contractile VSMC genes and upregulate genes associated with VSMC response to inflammation and growth factors. We find that Sca1 upregulation is a hallmark of VSMCs undergoing phenotypic switching in vitro and in vivo, and reveal an equivalent population of Sca1-positive VSMC-lineage cells in atherosclerotic plaques. Together, our analyses identify disease-relevant transcriptional signatures in VSMC-lineage cells in healthy blood vessels, with implications for disease susceptibility, diagnosis and prevention.BH

    Modelling Future Coronary Heart Disease Mortality to 2030 in the British Isles.

    Get PDF
    OBJECTIVE: Despite rapid declines over the last two decades, coronary heart disease (CHD) mortality rates in the British Isles are still amongst the highest in Europe. This study uses a modelling approach to compare the potential impact of future risk factor scenarios relating to smoking and physical activity levels, dietary salt and saturated fat intakes on future CHD mortality in three countries: Northern Ireland (NI), Republic of Ireland (RoI) and Scotland. METHODS: CHD mortality models previously developed and validated in each country were extended to predict potential reductions in CHD mortality from 2010 (baseline year) to 2030. Risk factor trends data from recent surveys at baseline were used to model alternative future risk factor scenarios: Absolute decreases in (i) smoking prevalence and (ii) physical inactivity rates of up to 15% by 2030; relative decreases in (iii) dietary salt intake of up to 30% by 2030 and (iv) dietary saturated fat of up to 6% by 2030. Probabilistic sensitivity analyses were then conducted. RESULTS: Projected populations in 2030 were 1.3, 3.4 and 3.9 million in NI, RoI and Scotland respectively (adults aged 25-84). In 2030: assuming recent declining mortality trends continue: 15% absolute reductions in smoking could decrease CHD deaths by 5.8-7.2%. 15% absolute reductions in physical inactivity levels could decrease CHD deaths by 3.1-3.6%. Relative reductions in salt intake of 30% could decrease CHD deaths by 5.2-5.6% and a 6% reduction in saturated fat intake might decrease CHD deaths by some 7.8-9.0%. These projections remained stable under a wide range of sensitivity analyses. CONCLUSIONS: Feasible reductions in four cardiovascular risk factors (already achieved elsewhere) could substantially reduce future coronary deaths. More aggressive polices are therefore needed in the British Isles to control tobacco, promote healthy food and increase physical activity
    • 

    corecore