500 research outputs found

    Analysis of the vibrational mode spectrum of a linear chain with spatially exponential properties

    Get PDF
    We deduce the dynamic frequency-domain-lattice Green's function of a linear chain with properties (masses and next-neighbor spring constants) of exponential spatial dependence. We analyze the system as discrete chain as well as the continuous limiting case which represents an elastic I D exponentially graded material. The discrete model yields closed form expressions for the N x N Green's function for an arbitrary number N = 2,...,infinity of particles of the chain. Utilizing this Green's function yields an explicit expression for the vibrational mode density. Despite of its simplicity the model reflects some characteristics of the dynamics of a I D exponentially graded elastic material. As a special case the well-known expressions for the Green's function and oscillator density of the homogeneous linear chain are contained in the model. The width of the frequency band is determined by the grading parameter which characterizes the exponential spatial dependence of the properties. In the limiting case of large grading parameter, the frequency band is localized around a single finite frequency where the band width tends to zero inversely with the grading parameter. In the continuum limit the discrete Green's function recovers the Green's function of the continuous equation of motion which takes in the time domain the form of a Klein-Gordon equation. (C) 2008 Elsevier Ltd. All rights reserved

    A Gene Encoding Arginyl-tRNA Synthetase Is Located in the Upstream Region of the lysA Gene in Brevibacterium lactofermentum: Regulation of argS-lysA Cluster Expression by Arginine

    Get PDF
    International audienceThe Brevibacterium lactofermentum argS gene, which encodes an arginyl-tRNA synthetase, was identified in the upstream region of the lysA gene. The cloned gene was sequenced; it encodes a 550-amino-acid protein with an Mr of 59,797. The deduced amino acid sequence showed 28% identical and 49% similar residues when compared with the sequence of the Escherichia coli arginyl-tRNA synthetase. The B. lactofermentum enzyme showed the highly conserved motifs of class I aminoacyl-tRNA synthetases. Expression of the argS gene in B. lactofermentum and E. coli resulted in an increase in aminoacyl-tRNA synthetase activity, correlated with the presence in sodium dodecyl sulfate-polyacrylamide gels of a clear protein band that corresponds to this enzyme. One single transcript of about 3,000 nucleotides and corresponding to the B. lactofermentum argS-lysA operon was identified. The transcription of these genes is repressed by lysine and induced by arginine, showing an interesting pattern of biosynthetic interlock between the pathways of both amino acids in corynebacteria

    Internal frequency conversion extreme ultraviolet interferometer using mutual coherence properties of two high-order-harmonic sources

    Get PDF
    International audienceWe report on an innovative two-dimensional imaging extreme ultraviolet (XUV) interferometer operating at 32 nm based on the mutual coherence of two laser high order harmonics (HOH) sources, separately generated in gas. We give the first evidence that the two mutually coherent HOH sources can be produced in two independent spatially separated gas jets, allowing for probing centimeter-sized objects. A magnification factor of 10 leads to a micron resolution associated with a subpicosecond temporal resolution. Single shot interferograms with a fringe visibility better than 30% are routinely produced. As a test of the XUV interferometer, we measure a maximum electronic density of 3×10^20 cm^−3 1.1 ns after the creation of a plasma on aluminum target

    Mars Express science highlights and future plans

    Get PDF
    21st EGU General Assembly, EGU2019, proceedings from the conference held 7-12 April, 2019 in Vienna, Austria, id.11100After 15 years in orbit Mars Express remains one of ESA's most scientifically productive Solar System missions whose publication record now exceeds 1200 papers. Characterization of the geological processes on a local-to-regional scale by HRSC, OMEGA and partner experiments on NASA spacecraft has allowed constraining land-forming processes in space and time. Recent results suggest episodic geological activity as well as the presence of large bodies of liquid water in several provinces (e.g. Eridania Planum, Terra Chimeria) in the early and middle Amazonian epoch and formation of vast sedimentary plains north of the Hellas basin. Mars Express observations and experimental teams provided essential contribution to the selection of the Mars-2020 landing sites. Recent discovery of subglacial liquid water underneath the Southern polar cap has proven that the mission science potential is still not exhausted. More than a decade-long record of the atmospheric parameters such as temperature, dust loading, water vapor and ozone abundance, water ice and CO2 clouds distribution, collected by SPICAM, PFS, OMEGA, HRSC and VMC together with subsequent modeling have provided key contributions to our understanding of the martian climate. Recent spectroscopic monitoring of the 2018 dust storm revealed dust properties, their spatial and temporal variations and atmospheric circulation. More than 10,000 crossings of the bow shock by Mars Express allowed ASPERA-3 to characterize complex behavior of the magnetic boundary topology as function of the solar EUV flux. Observations of the ion escape during complete solar cycle revealed important dependencies of the atmospheric erosion rate on parameters of the solar wind and EUV flux and established global energy balance between the solar wind and escaping ion flow. The observations showed that ion escape can be responsible for removal of about 10 mbar over the Mars history that implies existence of other more effective escape channels. The structure of the ionosphere sounded by the MARSIS radar and the MaRS radio science experiment was found to be significantly affected by the solar activity, the crustal magnetic field, as well as by the influx of meteorite and cometary dust. MARSIS and ASPERA-3 observations suggest that the sunlit ionosphere over the regions with strong crustal fields is denser and extends to higher altitudes as compared to the regions with no crustal anomalies. Several models of the upper atmosphere and plasma environment are being developed based on and in support of the collected experimental data. The models aim at creating user-friendly data base of plasma parameters similar to the Mars Climate Database that would be of great service to the planetary community. A significant recent achievement was the flawless transition to the >gyroless> attitude control and operations mode on the spacecraft, that would allow mitigating the onboard gyros aging and extending the mission lifetime. In November 2018 ESA's Science Programme Committee (SPC) confirmed the mission operations till the end of 2020 and notionally approved its extension till the end of 2022. The talk will give the Mars Express status, review the recent science highlights, and outline future plans focusing on synergistic science with TGO

    Characterization of anomalous Zeeman patterns in complex atomic spectra

    Full text link
    The modeling of complex atomic spectra is a difficult task, due to the huge number of levels and lines involved. In the presence of a magnetic field, the computation becomes even more difficult. The anomalous Zeeman pattern is a superposition of many absorption or emission profiles with different Zeeman relative strengths, shifts, widths, asymmetries and sharpnesses. We propose a statistical approach to study the effect of a magnetic field on the broadening of spectral lines and transition arrays in atomic spectra. In this model, the sigma and pi profiles are described using the moments of the Zeeman components, which depend on quantum numbers and Land\'{e} factors. A graphical calculation of these moments, together with a statistical modeling of Zeeman profiles as expansions in terms of Hermite polynomials are presented. It is shown that the procedure is more efficient, in terms of convergence and validity range, than the Taylor-series expansion in powers of the magnetic field which was suggested in the past. Finally, a simple approximate method to estimate the contribution of a magnetic field to the width of transition arrays is proposed. It relies on our recently published recursive technique for the numbering of LS-terms of an arbitrary configuration.Comment: submitted to Physical Review

    Atropselective syntheses of (-) and (+) rugulotrosin A utilizing point-to-axial chirality transfer

    Full text link
    Chiral, dimeric natural products containing complex structures and interesting biological properties have inspired chemists and biologists for decades. A seven-step total synthesis of the axially chiral, dimeric tetrahydroxanthone natural product rugulotrosin A is described. The synthesis employs a one-pot Suzuki coupling/dimerization to generate the requisite 2,2'-biaryl linkage. Highly selective point-to-axial chirality transfer was achieved using palladium catalysis with achiral phosphine ligands. Single X-ray crystal diffraction data were obtained to confirm both the atropisomeric configuration and absolute stereochemistry of rugulotrosin A. Computational studies are described to rationalize the atropselectivity observed in the key dimerization step. Comparison of the crude fungal extract with synthetic rugulotrosin A and its atropisomer verified that nature generates a single atropisomer of the natural product.P50 GM067041 - NIGMS NIH HHS; R01 GM099920 - NIGMS NIH HHS; GM-067041 - NIGMS NIH HHS; GM-099920 - NIGMS NIH HH

    Equine Amplification and Virulence of Subtype IE Venezuelan Equine Encephalitis Viruses Isolated during the 1993 and 1996 Mexican Epizootics

    Get PDF
    To assess the role of horses as amplification hosts during the 1993 and 1996 Mexican Venezuelan equine encephalitis (VEE) epizootics, we subcutaneously infected 10 horses by using four different equine isolates. Most horses showed little or no disease and low or nonexistent viremia. Neurologic disease developed in only 1 horse, and brain histopathologic examination showed meningeal lymphocytic infiltration, perivascular cuffing, and focalencephalitis. Three animals showed mild meningoencephalitis without clinical disease. Viral RNA was detected in the brain of several animals 12-14 days after infection. These data suggest that the duration and scope of the recent Mexican epizootics were limited by lack of equine amplification characteristic of previous, more extensive VEE outbreaks. The Mexican epizootics may have resulted from the circulation of a more equine-neurotropic, subtype IE virus strain or from increased transmission to horses due to amplification by other vertebrate hosts or transmission by more competent mosquito vectors

    Oxygen Isotope Effect Resulting from Polaron-induced Superconductivity in Cuprates

    Full text link
    The planar oxygen isotope effect coefficient measured as a function of hole doping in the Pr- and La-doped YBa2Cu3O7 (YBCO) and the Ni-doped La1.85Sr0.15CuO4 (LSCO) superconductors quantitatively and qualitatively follows the form originally proposed by Kresin and Wolf, which was derived for polarons perpendicular to the superconducting planes. Interestingly, the inverse oxygen isotope effect coefficient at the pseudogap temperature also follows the same formula. These findings allow the conclusion that the superconductivity in YBCO and LSCO results from polarons or rather bipolarons in the CuO2 plane. The original formula, proposed for the perpendicular direction only, is obviously more generally valid and accounts for the superconductivity in the CuO2 planes.Comment: Dedicated to Alex M\"uller on the occasion of his 90th birthda
    • …
    corecore