4,398 research outputs found

    Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism.

    Get PDF
    There is increasing evidence that VEGF-A antagonists may be detrimental to neuronal health following ocular administration. Here we investigated firstly the effects of VEGF-A neutralization on retinal neuronal survival in the Ins2(Akita) diabetic and JR5558 spontaneous choroidal neovascularization (CNV) mice, and then looked at potential mechanisms contributing to cell death. We detected elevated apoptosis in the ganglion cell layer in both these models following VEGF-A antagonism, indicating that even when vascular pathologies respond to treatment, neurons are still vulnerable to reduced VEGF-A levels. We observed that retinal ganglion cells (RGCs) seemed to be the cells most susceptible to VEGF-A antagonism, so we looked at anterograde transport in these cells, due to their long axons requiring optimal protein and organelle trafficking. Using cholera toxin B-subunit tracer studies, we found a distal reduction in transport in the superior colliculus following VEGF-A neutralization, which occurred prior to net RGC loss. This phenomenon of distal transport loss has been described as a feature of early pathological changes in glaucoma, Alzheimer's and Parkinson's disease models. Furthermore, we observed increased phosphorylation of p38 MAPK and downstream Hsp27 stress pathway signaling in the retinas from these experiments, potentially providing a mechanistic explanation for our findings. These experiments further highlight the possible risks of using VEGF-A antagonists to treat ocular neovascular disease, and suggest that VEGF-A may contribute to the maintenance and function of axonal transport in neurons of the retina.This work was funded by the Medical Research Council (G0901303) of the UK. We also wish to thank the Cambridge Eye Trust for their support.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/cddis.2016.11

    Effects of lowering body temperature via hyperhydration, with and without glycerol ingestion and practical precooling on cycling time trial performance in hot and humid conditions

    Get PDF
    Background Hypohydration and hyperthermia are factors that may contribute to fatigue and impairment of endurance performance. The purpose of this study was to investigate the effectiveness of combining glycerol hyperhydration and an established precooling technique on cycling time trial performance in hot environmental conditions. Methods Twelve well-trained male cyclists performed three 46.4-km laboratory-based cycling trials that included two climbs, under hot and humid environmental conditions (33.3 ± 1.1°C; 50 ± 6% r.h.). Subjects were required to hyperhydrate with 25 g.kg-1 body mass (BM) of a 4°C beverage containing 6% carbohydrate (CON) 2.5 h prior to the time trial. On two occasions, subjects were also exposed to an established precooling technique (PC) 60 min prior to the time trial, involving 14 g.kg-1 BM ice slurry ingestion and applied iced towels over 30 min. During one PC trial, 1.2 g.kg-1 BM glycerol was added to the hyperhydration beverage in a double-blind fashion (PC+G). Statistics used in this study involve the combination of traditional probability statistics and a magnitude-based inference approach. Results Hyperhydration resulted in large reductions (−0.6 to −0.7°C) in rectal temperature. The addition of glycerol to this solution also lowered urine output (330 ml, 10%). Precooling induced further small (−0.3°C) to moderate (−0.4°C) reductions in rectal temperature with PC and PC+G treatments, respectively, when compared with CON (0.0°C, P<0.05). Overall, PC+G failed to achieve a clear change in cycling performance over CON, but PC showed a possible 2% (30 s, P=0.02) improvement in performance time on climb 2 compared to CON. This improvement was attributed to subjects’ lower perception of effort reported over the first 10 km of the trial, despite no clear performance change during this time. No differences were detected in any other physiological measurements throughout the time trial. Conclusions Despite increasing fluid intake and reducing core temperature, performance and thermoregulatory benefits of a hyperhydration strategy with and without the addition of glycerol, plus practical precooling, were not superior to hyperhydration alone. Further research is warranted to further refine preparation strategies for athletes competing in thermally stressful events to optimize health and maximize performance outcomes

    Achieving highly efficient gene transfer to the bladder by increasing the molecular weight of polymer-based nanoparticles

    Get PDF
    Short dwell-time and poor penetration of the bladder permeability barrier (BPB) are the main obstacles to intravesical treatments for bladder diseases, and is evidenced by the lack of such therapeutic options on the market. Herein, we demonstrate that by finely tuning the molecular weight of our cationic polymer mucoadhesive nanoparticles, we enhanced our gene transfer, leading to improved adherence and penetrance through the BPB in a safe and efficient manner. Specifically, increasing the polymer molecular weight from 45 kDa to 83 kDa enhanced luciferase plasmid transfer to the healthy murine bladder, leading to 1.35 ng/g luciferase protein expression in the urothelium and lamina propria regions. The relatively higher molecular weight polymer (83 kDa) did not induce morphologic changes or inflammatory responses in the bladder. This approach of altering polymer molecular weight for prolonging gene transfer residence time and deeper penetration through the BPB could be the basis for the design of future gene therapies for bladder diseases

    Treatment threshold for intra-operative hypotension in clinical practice-a prospective cohort study in older patients in the UK

    Get PDF
    Intra-operative hypotension frequently complicates anaesthesia in older patients and is implicated in peri-operative organ hypoperfusion and injury. The prevalence and corresponding treatment thresholds of hypotension are incompletely described in the UK. This study aimed to identify prevalence of intra-operative hypotension and its treatment thresholds in UK practice. Patients aged ≥ 65 years were studied prospectively from 196 UK hospitals within a 48-hour timeframe. The primary outcome was the incidence of hypotension (mean arterial pressure 20%; systolic blood pressure 20% reduction in systolic blood pressure from baseline and 77.5% systolic blood pressure <100 mmHg. The mean (SD) blood pressure triggering vasopressor therapy was mean arterial pressure 64.2 (11.6) mmHg and the mean (SD) stated intended treatment threshold from the survey was mean arterial pressure 60.6 (9.7) mmHg. A composite adverse outcome of myocardial injury, kidney injury, stroke or death affected 345 patients (7.3%). In this representative sample of UK peri-operative practice, the majority of older patients experienced intra-operative hypotension and treatment was delivered below suggested thresholds. This highlights both potential for intra-operative organ injury and substantial opportunity for improving treatment of intra-operative hypotension

    Down-regulation of GP130 signaling sensitizes bladder cancer to cisplatin by impairing Ku70 DNA repair signaling and promoting apoptosis

    Get PDF
    Chemoresistance is one of the barriers for the development of bladder cancer treatments. Previously, we showed that glycoprotein-130 (GP130) is overexpressed in chemoresistant bladder cancer cells and that knocking down GP130 expression reduced cell viability. In our current work, we showed that down-regulation of GP130 sensitized bladder cancer cells to cisplatin-based chemotherapy by activating DNA repair signaling. We performed immunohistochemistry and demonstrated a positive correlation between the levels of Ku70, an initiator of canonical non-homologous end joining repair (c-NHEJ) and suppressor of apoptosis, and GP130 in human bladder cancer specimens. GP130 knockdown by SC144, a small molecule inhibitor, in combination with cisplatin, increased the number of DNA lesions, specifically DNA double-stranded breaks, with a subsequent increase in apoptosis and reduced cell viability. Furthermore, GP130 inhibition attenuated Ku70 expression in bladder and breast cancer cells as well as in transformed kidney cells. In addition, we fabricated a novel polymer-lipid hybrid delivery system to facilitate GP130 siRNA delivery that had a similar efficiency when compared with Lipofectamine, but induced less toxicity

    Efficacy of tranexamic acid in reducing blood loss in posterior lumbar spine surgery for degenerative spinal stenosis with instability: a retrospective case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Degenerative spinal stenosis and instability requiring multilevel spine surgery has been associated with large blood losses. Factors that affect perioperative blood loss include time of surgery, surgical procedure, patient height, combined anterior/posterior approaches, number of levels fused, blood salvage techniques, and the use of anti-fibrinolytic medications. This study was done to evaluate the efficacy of tranexamic acid in reducing blood loss in spine surgery.</p> <p>Methods</p> <p>This retrospective case control study includes 97 patients who had to undergo surgery because of degenerative lumbar spinal stenosis and instability. All operations included spinal decompression, interbody fusion and posterior instrumentation (4-5 segments). Forty-six patients received 1 g tranexamic acid intravenous, preoperative and six hours and twelve hours postoperative; 51 patients without tranexamic acid administration were evaluated as a control group. Based on the records, the intra- and postoperative blood losses were measured by evaluating the drainage and cell saver systems 6, 12 and 24 hours post operation. Additionally, hemoglobin concentration and platelet concentration were reviewed. Furthermore, the number of red cell transfusions given and complications associated with tranexamic acid were assessed.</p> <p>Results</p> <p>The postoperative hemoglobin concentration demonstrated a statistically significant difference with a p value of 0.0130 showing superiority for tranexamic acid use (tranexamic acid group: 11.08 g/dl, SD: 1.68; control group: 10.29 g/dl, SD: 1.39). The intraoperative cell saver volume and drainage volume after 24 h demonstrated a significant difference as well, which indicates a less blood loss in the tranexamic acid group than the control group. The postoperative drainage volume at12 hours showed no significant differences; nor did the platelet concentration Allogenic blood transfusion (two red cell units) was needed for eight patients in the tranexamic acid group and nine in the control group because of postoperative anemia. Complications associated with the administration of tranexamic acid, e.g. renal failure, deep vein thrombosis or pulmonary embolism did not occur.</p> <p>Conclusions</p> <p>This study suggests a less blood loss when administering tranexamic acid in posterior lumbar spine surgery as demonstrated by the higher postoperative hemoglobin concentration and the less blood loss. But given the relatively small volume of blood loss in the patients of this study it is underpowered to show a difference in transfusion rates.</p

    Regulation of pituitary MT1 melatonin receptor expression by gonadotrophin-releasing hormone (GnRH) and early growth response factor-1 (Egr-1) : in vivo and in vitro studies

    Get PDF
    Copyright: © 2014 Bae et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC; grant BB/F020309/1; http://www.bbsrc.ac.uk/home/home.aspx). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Boolean network model predicts cell cycle sequence of fission yeast

    Get PDF
    A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer, faithfully reproduces the known sequence of regulatory activity patterns along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping.Comment: 10 pages, 3 figure
    corecore