1,571 research outputs found

    Asynchronous glacier dynamics during the Antarctic Cold Reversal in central Patagonia

    Get PDF
    We present 14 new 10Be cosmogenic nuclide exposure ages quantifying asynchronous readvances during the Antarctic Cold Reversal from glaciers in the Baker Valley region of central Patagonia. We constrain glacier and ice-dammed palaeolake dynamics using a landsystems approach, concentrating on outlet glaciers from the eastern Northern Patagonian Icefield (NPI) and Monte San Lorenzo (MSL). Soler Glacier (NPI) produced lateral moraines above Lago Bertrand from 15.1 ± 0.7 to 14.0 ± 0.6 ka, when it dammed the drainage of Lago General Carrera/Buenos Aires through Río Baker at a bedrock pinning point. At this time, Soler Glacier terminated into the 400 m “Deseado” level of the ice-dammed palaeolake. Later, Calluqueo Glacier (MSL) deposited subaerial and subaqueous moraines in the Salto Valley near Cochrane at 13.0 ± 0.6 ka. These moraines were deposited in an ice-dammed palaeolake unified through the Baker Valley (Lago Chalenko; 350 m asl). The Salto Valley glaciolacustrine landsystem includes subaqueous morainal banks, ice-scoured bedrock, glacial diamicton plastered onto valley sides, perched delta terraces, kame terraces, ice-contact fans, palaeoshorelines and subaerial push and lateral moraines. Boulders from the subaqueous Salto Moraine became exposed at 12.1 ± 0.6 years, indicating palaeolake drainage. These data show an asynchronous advance of outlet glaciers from the Northern Patagonian Icefield and Monte San Lorenzo during the Antarctic Cold Reversal. These advances occurred during a period of regional climatic cooling, but differential moraine extent and timing of advance was controlled by topography and calving processes

    Benthic biomass size spectra in shelf and deep-sea sediments

    Get PDF
    The biomass distributions of marine benthic metazoans (meio- to macro-fauna, 1 ?g–32 mg wet weight) across three contrasting sites were investigated to test the hypothesis that allometry can consistently explain observed trends in biomass spectra. Biomass (and abundance) size spectra were determined from observations made at the Faroe–Shetland Channel (FSC) in the Northeast Atlantic (water depth 1600 m), the Fladen Ground (FG) in the North Sea (150 m), and the hypoxic Oman Margin (OM) in the Arabian Sea (500 m). Observed biomass increased with body size as a power law at FG (scaling exponent, b = 0.16) and FSC (b = 0.32), but less convincingly at OM (b = 0.12 but not significantly different from 0). A simple model was constructed to represent the same 16 metazoan size classes used for the observed spectra, all reliant on a common detrital food pool, and allowing the three key processes of ingestion, respiration and mortality to scale with body size. A micro-genetic algorithm was used to fit the model to observations at the sites. The model accurately reproduces the observed scaling without needing to include the effects of local influences such as hypoxia. Our results suggest that the size-scaling of mortality and ingestion are dominant factors determining the distribution of biomass across the meio- to macrofaunal size range in contrasting marine sediment communities. Both the observations and the model results are broadly in agreement with the "metabolic theory of ecology" in predicting a quarter power scaling of biomass across geometric body size classes

    Preeclampsia is associated with compromized maternal synthesis of long chain polyunsaturated fatty acids leading to offspring deficiency

    Get PDF
    Obesity and excessive lipolysis are implicated in preeclampsia (PE). Intrauterine growth restriction is associated with low maternal body mass index and decreased lipolysis. Our aim was to assess how maternal and offspring fatty acid metabolism is altered in mothers in the third trimester of pregnancy with PE (n=62) or intrauterine growth restriction (n=23) compared with healthy pregnancies (n=164). Markers of lipid metabolism and erythrocyte fatty acid concentrations were measured. Maternal adipose tissue fatty acid composition and mRNA expression of adipose tissue fatty acid–metabolizing enzymes and placental fatty acid transporters were compared. Mothers with PE had higher plasma triglyceride (21%, P<0.001) and nonesterified fatty acid (50%, P<0.001) concentrations than controls. Concentrations of major n−6 and n−3 long-chain polyunsaturated fatty acids in erythrocytes were 23% to 60% lower (all P<0.005) in PE and intrauterine growth restriction mothers and offspring compared with controls. Subcutaneous adipose tissue Δ−5 and Δ−6 desaturase and very long-chain fatty acid elongase mRNA expression was lower in PE than controls (respectively, mean [SD] control 3.38 [2.96] versus PE 1.83 [1.91], P=0.030; 3.33 [2.25] versus 1.03 [0.96], P<0.001; 0.40 [0.81] versus 0.00 [0.00], P=0.038 expression relative to control gene [square root]). Low maternal and fetal long-chain polyunsaturated fatty acid concentrations in PE may be the result of decreased maternal synthesis

    Validity of a pictorial perceived exertion scale for effort estimation and effort production during stepping exercise in adolescent children

    Get PDF
    This is the author's PDF version of an article published in European Physical Education Review ©2002. The definitive version is available at http://epe.sagepub.com.Recent developments in the study of paediatric effort perception have continued to emphasise the importance of child-specific rating scales. The purpose of this study was to examine the validity of an illustrated 1 – 10 perceived exertion scale; the Pictorial Children’s Effort Rating Table (PCERT). 4 class groups comprising 104 children; 27 boys and 29 girls, aged 12.1±0.3 years and 26 boys, 22 girls, aged 15.3±0.2 years were selected from two schools and participated in the initial development of the PCERT. Subsequently, 48 of these children, 12 boys and 12 girls from each age group were randomly selected to participate in the PCERT validation study. Exercise trials were divided into 2 phases and took place 7 to 10 days apart. During phase 1, children completed 5 x 3-minute incremental stepping exercise bouts interspersed with 2-minute recovery periods. Heart rate (HR) and ratings of exertion were recorded during the final 15 s of each exercise bout. In phase 2 the children were asked to regulate their exercising effort during 4 x 4-minute bouts of stepping so that it matched randomly prescribed PCERT levels (3, 5, 7 and 9). Analysis of data from Phase 1 yielded significant (P<0.01) relationships between perceived and objective (HR) effort measures for girls. In addition, the main effects of exercise intensity on perceived exertion and HR were significant (P<0.01); perceived exertion increased as exercise intensity increased and this was reflected in simultaneous significant rises in HR. During phase 2, HR and estimated power output (POapprox) produced at each of the four prescribed effort levels were significantly different (P<0.01). The children in this study were able to discriminate between 4 different exercise intensities and regulate their exercise intensity according to 4 prescribed levels of perceived exertion. In seeking to contribute towards children’s recommended physical activity levels and helping them understand how to self-regulate their activity, the application of the PCERT within the context of physical education is a desirable direction for future research

    Knowledge-Level Reflection

    Get PDF
    This paper presents an overview of the REFLECT project. It defines the notion of knowledge level reflection that has been central to the project, it compares this notion with existing approaches to reflection in related fields, and investigates some of the consequences of the concept of knowledge level reflection: what is a general architecture for knowledge level reflection, how to model the object component in such an architecture, what is the nature of reflective theories, how can we design such architectures, and what are the results of our actual experiments with such systems

    The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment

    Get PDF
    AbstractUnderstanding how and why affective responses change with age is central to characterizing typical and atypical emotional development. Prior work has emphasized the role of the amygdala and prefrontal cortex (PFC), which show age-related changes in function and connectivity. However, developmental neuroimaging research has only recently begun to unpack whether age effects in the amygdala and PFC are specific to affective stimuli or may be found for neutral stimuli as well, a possibility that would support a general, rather than affect-specific, account of amygdala-PFC development. To examine this, 112 individuals ranging from 6 to 23 years of age viewed aversive and neutral images while undergoing fMRI scanning. Across age, participants reported more negative affect and showed greater amygdala responses for aversive than neutral stimuli. However, children were generally more sensitive to both neutral and aversive stimuli, as indexed by affective reports and amygdala responses. At the same time, the transition from childhood to adolescence was marked by a ventral-to-dorsal shift in medial prefrontal responses to aversive, but not neutral, stimuli. Given the role that dmPFC plays in executive control and higher-level representations of emotion, these results suggest that adolescence is characterized by a shift towards representing emotional events in increasingly cognitive terms
    corecore