166 research outputs found

    Nanoparticle metrology of silicates using time-resolved multiplexed dye fluorescence anisotropy, small angle x-ray scattering and molecular dynamics simulations

    Get PDF
    We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study.

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10(-8)) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10(-8)). The top IBC association for SBP was rs2012318 (P= 6.4 × 10(-6)) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10(-6)) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexity

    The burden of unintentional drowning: Global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study

    Get PDF
    __Background:__ Drowning is a leading cause of injury-related mortality globally. Unintentional drowning (International Classification of Diseases (ICD) 10 codes W65-74 and ICD9 E910) is one of the 30 mutually exclusive and collectively exhaustive causes of injury-related mortality in the Global Burden of Disease (GBD) study. This study's objective is to describe unintentional drowning using GBD estimates from 1990 to 2017. __Methods:__ Unintentional drowning from GBD 2017 was estimated for cause-specific mortality and years of life lost (YLLs), age, sex, country, region, Socio-demographic Index (SDI) quintile, and trends from 1990 to 2017. GBD 2017 used standard GBD methods for estimating mortality from drowning. __Results:__ Globally, unintentional drowning mortality decreased by 44.5% between 1990 and 2017, from 531 956 (uncertainty interval (UI): 484 107 to 572 854) to 295 210 (284 493 to 306 187) deaths. Global age-standardised mortality rates decreased 57.4%, from 9.3 (8.5 to 10.0) in 1990 to 4.0 (3.8 to 4.1) per 100 000 per annum in 2017. Unintentional drowning-associated mortality was generally higher in children, males and in low-SDI to middle-SDI countries. China, India, Pakistan and Bangladesh accounted for 51.2% of all drowning deaths in 2017. Oceania was the region with the highest rate of age-standardised YLLs in 2017, with 45 434 (40 850 to 50 539) YLLs per 100 000 across both sexes. __Conclusions:__ There has been a decline in global drowning rates. This study shows that the decline was not consistent across countries. The results reinforce the need for continued and improved policy, prevention and research efforts, with a focus on low-and middle-income countries

    Nanoparticle metrology of silicates using time-resolved multiplexed dye fluorescence anisotropy

    No full text
    Sodium silicates are versatile inorganic chemicals, manufactured by combining silica sand and soda ash under high temperatures. They are often used in coating and bonding applications when in aqueous solution. Additionally, they exhibit various attractive characteristics, such as being odourless, non-toxic, high strength and rigidity, resistant to high temperatures and overall low cost. An important characteristic of silicates is the relationship between the ratio of silica to soda concentrations and the size of the species. A gold standard used to identify the presence of different oligomer species in sodium silicates is 29Si nuclear magnetic resonance spectroscopy, however, this method does not provide any quantitative data regarding the size of different species1 . Recently, there has been some promising development in determining the size and shape of different oligomer species using small-angle X-ray scattering (SAXS) and dynamic light scattering2 . Unfortunately, both of these methods are far from ideal and have significant drawbacks such as being inaccurate for particles under 10 nm size and being expensive and complex. The alternative approach developed originally in our laboratory is based on the measurements of time-resolved fluorescence anisotropy of fluorescent probes, which utilizes the relationship between the silica particle size and the rate of the probe’s rotational diffusion when bound to the silica particle. This fluorescence technique offers high sensitivity and has an appropriate timescale due to the high variety of fluorescent probes available. This technique can be adapted to the specification of the medium to be researched3 . In this work we investigate the nanometrology of particle sizes in sodium silicate liquors at high pH using timeresolved fluorescence anisotropy. Instead of using a single dye label as in the previous approach, we investigate the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The recovered average particle size has an upper limit of 7.0±1.2Å, consistent with the SAXS measurement

    Measurement of charged-particle multiplicities in gluon and quark jets in p(p)over-bar collisions at root s=1.8 TeV

    Get PDF
    We report the first largely model independent measurement of charged particle multiplicities in quark and gluon jets, N-q and N-g, produced at the Fermilab Tevatron in p (p) over bar collisions with a center-of-mass energy of 1.8 TeV and recorded by the Collider Detector at Fermilab. The measurements are made for jets with average energies of 41 and 53 GeV by counting charged particle tracks in cones with opening angles of θ(c)=0.28, 0.36, and 0.47 rad around the jet axis. The corresponding jet hardness Q=E-jetθ(c) varies in the range from 12 to 25 GeV. At Q=19.2 GeV, the ratio of multiplicities r=N-g/N-q is found to be 1.64&PLUSMN; 0.17, where statistical and systematic uncertainties are added in quadrature. The results are in agreement with resummed perturbative QCD calculations

    Australia (with Papua New Guinea)

    No full text
    corecore