50 research outputs found

    Mitochondrial disease in Southwestern Finland. Population-based molecular genetic and clinical studies

    Get PDF
    Mitochondria are present in all eukaryotic cells. They enable these cells utilize oxygen in the production of adenosine triphosphate in the oxidative phosphorylation system, the mitochondrial respiratory chain. The concept ‘mitochondrial disease’ conventionally refers to disorders of the respiratory chain that lead to oxidative phosphorylation defect. Mitochondrial disease in humans can present at any age, and practically in any organ system. Mitochondrial disease can be inherited in maternal, autosomal dominant, autosomal recessive, or X-chromosomal fashion. One of the most common molecular etiologies of mitochondrial disease in population is the m.3243A>G mutation in the MT-TL1 gene, encoding mitochondrial tRNALeu(UUR). Clinical evaluation of patients with m.3243A>G has revealed various typical clinical features, such as stroke-like episodes, diabetes mellitus and sensorineural hearing loss. The prevalence and clinical characteristics of mitochondrial disease in population are not well known. This thesis consists of a series of studies, in which the prevalence and characteristics of mitochondrial disease in the adult population of Southwestern Finland were assessed. Mitochondrial haplogroup Uk was associated with increased risk of occipital ischemic stroke among young women. Large-scale mitochondrial DNA deletions and mutations of the POLG1 gene were the most common molecular etiologies of progressive external ophthalmoplegia. Around 1% of diabetes mellitus emerging between the ages 18 – 45 years was associated with the m.3243A>G mutation. Moreover, among these young diabetic patients, mitochondrial haplogroup U was associated with maternal family history of diabetes. These studies demonstrate the usefulness of carefully planned molecular epidemiological investigations in the study of mitochondrial disorders.Siirretty Doriast

    Erikoislääkärikoulutuksen koejakso - muutakin kuin hyväksytty tai hylätty

    Get PDF
    Erikoislääkärikoulutuksen koejakson rakenne, tarkoitus ja toteuttamistapa ovat edelleen monelle koulutukseen hakevalle lääkärille ja erikoistujien arviointiin osallistuvalle erikoislääkärille epäselviä

    Erikoislääkärikoulutuksen koejakso - muutakin kuin hyväksytty tai hylätty

    Get PDF
    Erikoislääkärikoulutuksen koejakson rakenne, tarkoitus ja toteuttamistapa ovat edelleen monelle koulutukseen hakevalle lääkärille ja erikoistujien arviointiin osallistuvalle erikoislääkärille epäselviä

    Deep brain stimulation for monogenic Parkinson's disease : a systematic review

    Get PDF
    Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD) patients with motor fluctuations and dyskinesias. The key DBS efficacy studies were performed in PD patients with unknown genotypes; however, given the estimated monogenic mutation prevalence of approximately 5-10%, most commonly LRRK2, PRKN, PINK1 and SNCA, and risk-increasing genetic factors such as GBA, proper characterization is becoming increasingly relevant. We performed a systematic review of 46 studies that reported DBS effects in 221 genetic PD patients. The results suggest that monogenic PD patients have variable DBS benefit depending on the mutated gene. Outcome appears excellent in patients with the most common LRRK2 mutation, p.G2019S, and good in patients with PRKN mutations but poor in patients with the more rare LRRK2 p.R1441G mutation. The overall benefit of DBS in SNCA, GBA and LRRK2 p.T2031S mutations may be compromised due to rapid progression of cognitive and neuropsychiatric symptoms. In the presence of other mutations, the motor changes in DBS-treated monogenic PD patients appear comparable to those of the general PD population.Peer reviewe

    The m.7510T > C mutation: Hearing impairment and a complex neurologic phenotype

    Get PDF
    Objectives: Mutations in mitochondrial DNA cause a variety of clinical phenotypes ranging from a mild hearing impairment (HI) to severe encephalomyopathy. The MT-TS1 gene is a hotspot for mutations causing HI. The m.7510T>C mutation in MT-TS1 has been previously associated with non-syndromic HI in four families from different ethnic backgrounds.Materials and Methods: We describe the clinical, genetic, and histopathological findings in a Finnish family with the heteroplasmic m.7510T>C mutation in mitochondrial DNA.ResultsThe family proband presented with a progressive mitochondrial disease phenotype including migraine, epilepsy, mild ataxia, and cognitive impairment in addition to HI. One young adult presented with HI only. Other family members had a mild phenotype comprising ataxia and tremor in addition to HI. Mutation heteroplasmy was 90% in the blood of maternal grandmother and 99% in the muscle and blood of the three other family members. Muscle histology was consistent with mitochondrial myopathy in three family members. The mitochondrial haplogroup of the family was a different branch of the haplogroup H than in the previous reports of this mutation.Conclusion: Our results suggest that, in addition to sensorineural HI, the m.7510T>C mutation is associated with a spectrum of mitochondrial disease clinical features including migraine, epilepsy, cognitive impairment, ataxia, and tremor, and with evidence of mitochondrial myopathy

    Deep brain stimulation for monogenic Parkinson’s disease: a systematic review

    Get PDF
    Deep brain stimulation (DBS) is an effective treatment for Parkinson’s disease (PD) patients with motor fluctuations and dyskinesias. The key DBS efficacy studies were performed in PD patients with unknown genotypes; however, given the estimated monogenic mutation prevalence of approximately 5–10%, most commonly LRRK2, PRKN, PINK1 and SNCA, and risk-increasing genetic factors such as GBA, proper characterization is becoming increasingly relevant. We performed a systematic review of 46 studies that reported DBS effects in 221 genetic PD patients. The results suggest that monogenic PD patients have variable DBS benefit depending on the mutated gene. Outcome appears excellent in patients with the most common LRRK2 mutation, p.G2019S, and good in patients with PRKN mutations but poor in patients with the more rare LRRK2 p.R1441G mutation. The overall benefit of DBS in SNCA, GBA and LRRK2 p.T2031S mutations may be compromised due to rapid progression of cognitive and neuropsychiatric symptoms. In the presence of other mutations, the motor changes in DBS-treated monogenic PD patients appear comparable to those of the general PD population.</p
    corecore