10,063 research outputs found

    Random Delays and the Synchronization of Chaotic Maps

    Full text link
    We investigate the dynamics of an array of logistic maps coupled with random delay times. We report that for adequate coupling strength the array is able to synchronize, in spite of the random delays. Specifically, we find that the synchronized state is a homogeneous steady-state, where the chaotic dynamics of the individual maps is suppressed. This differs drastically from the synchronization with instantaneous and fixed-delay coupling, as in those cases the dynamics is chaotic. Also in contrast with the instantaneous and fixed-delay cases, the synchronization does not dependent on the connection topology, depends only on the average number of links per node. We find a scaling law that relates the distance to synchronization with the randomness of the delays. We also carry out a statistical linear stability analysis that confirms the numerical results and provides a better understanding of the nontrivial roles of random delayed interactions.Comment: 5 pages, 5 figure

    Dynamical analysis of the Gliese-876 Laplace resonance

    Get PDF
    The existence of multiple planetary systems involved in mean motion conmensurabilities has increased significantly since the Kepler mission. Although most correspond to 2-planet resonances, multiple resonances have also been found. The Laplace resonance is a particular case of a three-body resonance where the period ratio between consecutive pairs is n_1/n_2 near to n_2/n_3 near to 2/1. It is not clear how this triple resonance can act in order to stabilize (or not) the systems. The most reliable extrasolar system located in a Laplace resonance is GJ876 because it has two independent confirmations. However best-fit parameters were obtained without previous knowledge of resonance structure and no exploration of all the possible stable solutions for the system where done. In the present work we explored the different configurations allowed by the Laplace resonance in the GJ876 system by varying the planetary parameters of the third outer planet. We find that in this case the Laplace resonance is a stabilization mechanism in itself, defined by a tiny island of regular motion surrounded by (unstable) highly chaotic orbits. Low eccentric orbits and mutual inclinations from -20 to 20 degrees are compatible with the observations. A definite range of mass ratio must be assumed to maintain orbital stability. Finally we give constrains for argument of pericenters and mean anomalies in order to assure stability for this kind of systems.Comment: 7 pages, 7 figures, accepted in MNRA

    Inferring long memory processes in the climate network via ordinal pattern analysis

    Get PDF
    We use ordinal patterns and symbolic analysis to construct global climate networks and uncover long and short term memory processes. The data analyzed is the monthly averaged surface air temperature (SAT field) and the results suggest that the time variability of the SAT field is determined by patterns of oscillatory behavior that repeat from time to time, with a periodicity related to intraseasonal oscillations and to El Ni\~{n}o on seasonal-to-interannual time scales.Comment: 10 pages, 13 figures Enlarged version, new sections and figures. Accepted in Chao

    The x-ray corona and jet of cygnus x-1

    Full text link
    Evidence is presented indicating that in the hard state of Cygnus X-1, the coronal mag- netic field might be below equipartition with radiation (suggesting that the corona is not powered by magnetic field dissipation) and that the ion temperature in the corona is significantly lower than what predicted by ADAF like models. It is also shown that the current estimates of the jet power set interesting contraints on the jet velocity (which is at least mildly relativistic), the accretion efficiency (which is large in both spectral states), and the nature of the X-ray emitting region (which is unlikely to be the jet).Comment: 8 pages, 1 figure. Accepted for publication in Journal of Modern Physics D, Proceedings of HEPRO II conference, Buenos Aires, Argentina, October 26-30, 200

    Front dynamics in turbulent media

    Get PDF
    A study of a stable front propagating in a turbulent medium is presented. The front is generated through a reaction-diffusion equation, and the turbulent medium is statistically modeled using a Langevin equation. Numerical simulations indicate the presence of two different dynamical regimes. These regimes appear when the turbulent flow either wrinkles a still rather sharp propagating interfase or broadens it. Specific dependences of the propagating velocities on stirring intensities appropriate to each case are found and fitted when possible according to theoretically predicted laws. Different turbulent spectra are considered.Comment: 8 pages, REVTEX, 6 postscript figures included. To appear in Phys. Fluids (1997

    Student Conceptual Difficulties in Hydrodynamics

    Get PDF
    We describe a study on the conceptual difficulties faced by college students in understanding hydrodynamics of ideal fluids. This study was based on responses obtained in hundreds of written exams and oral interviews, which were held with first-year Engineering and Science university students. Their responses allowed us to identify a series of misconceptions unreported in the literature so far. The study findings demonstrate that the most important difficulties arise from the students' inability to establish a link between the kinematics and dynamics of moving fluids, and from a lack of understanding regarding how different regions of a system interact.Comment: 12 pages, 10 figures (small corrections
    • …
    corecore