9,348 research outputs found

    Quantum tomography for collider physics: Illustrations with lepton pair production

    Get PDF
    Quantum tomography is a method to experimentally extract all that is observable about a quantum mechanical system. We introduce quantum tomography to collider physics with the illustration of the angular distribution of lepton pairs. The tomographic method bypasses much of the field-theoretic formalism to concentrate on what can be observed with experimental data, and how to characterize the data. We provide a practical, experimentally-driven guide to model-independent analysis using density matrices at every step. Comparison with traditional methods of analyzing angular correlations of inclusive reactions finds many advantages in the tomographic method, which include manifest Lorentz covariance, direct incorporation of positivity constraints, exhaustively complete polarization information, and new invariants free from frame conventions. For example, experimental data can determine the entanglemententanglement entropyentropy of the production process, which is a model-independent invariant that measures the degree of coherence of the subprocess. We give reproducible numerical examples and provide a supplemental standalone computer code that implements the procedure. We also highlight a property of complexcomplex positivitypositivity that guarantees in a least-squares type fit that a local minimum of a χ2\chi^{2} statistic will be a global minimum: There are no isolated local minima. This property with an automated implementation of positivity promises to mitigate issues relating to multiple minima and convention-dependence that have been problematic in previous work on angular distributions.Comment: 25 pages, 3 figure

    On the Hyperbolicity of Lorenz Renormalization

    Full text link
    We consider infinitely renormalizable Lorenz maps with real critical exponent α>1\alpha>1 and combinatorial type which is monotone and satisfies a long return condition. For these combinatorial types we prove the existence of periodic points of the renormalization operator, and that each map in the limit set of renormalization has an associated unstable manifold. An unstable manifold defines a family of Lorenz maps and we prove that each infinitely renormalizable combinatorial type (satisfying the above conditions) has a unique representative within such a family. We also prove that each infinitely renormalizable map has no wandering intervals and that the closure of the forward orbits of its critical values is a Cantor attractor of measure zero.Comment: 63 pages; 10 figure

    Invariant measures for Cherry flows

    Full text link
    We investigate the invariant probability measures for Cherry flows, i.e. flows on the two-torus which have a saddle, a source, and no other fixed points, closed orbits or homoclinic orbits. In the case when the saddle is dissipative or conservative we show that the only invariant probability measures are the Dirac measures at the two fixed points, and the Dirac measure at the saddle is the physical measure. In the other case we prove that there exists also an invariant probability measure supported on the quasi-minimal set, we discuss some situations when this other invariant measure is the physical measure, and conjecture that this is always the case. The main techniques used are the study of the integrability of the return time with respect to the invariant measure of the return map to a closed transversal to the flow, and the study of the close returns near the saddle.Comment: 12 pages; updated versio

    Transitions in a globalising world

    Get PDF
    The increasing complexity of our global society means that sustainable development cannot be addressed from a single perspective or scientific discipline. By using the concept of transitions, we examine current and future tensions between welfare, well-being and the environment, and focus on four major issues that are of global importance: two of our key natural resources, water and biodiversity; the health of human populations; and the developments related to global tourism. In our global assessment we base ourselves on the most recent scenario efforts of the Intergovernmental Panel on Climate Change (IPCC). Future developments are explored along the lines of four development paths (scenario groups), defined along two dimensions (global versus regional dynamics and emphasising economic objectives versus environmental and equity objectives

    Entropy-based characterizations of the observable-dependence of the fluctuation-dissipation temperature

    Full text link
    The definition of a nonequilibrium temperature through generalized fluctuation-dissipation relations relies on the independence of the fluctuation-dissipation temperature from the observable considered. We argue that this observable independence is deeply related to the uniformity of the phase-space probability distribution on the hypersurfaces of constant energy. This property is shown explicitly on three different stochastic models, where observable-dependence of the fluctuation-dissipation temperature arises only when the uniformity of the phase-space distribution is broken. The first model is an energy transport model on a ring, with biased local transfer rules. In the second model, defined on a fully connected geometry, energy is exchanged with two heat baths at different temperatures, breaking the uniformity of the phase-space distribution. Finally, in the last model, the system is connected to a zero temperature reservoir, and preserves the uniformity of the phase-space distribution in the relaxation regime, leading to an observable-independent temperature.Comment: 15 pages, 7 figure

    A Phase Transition for Circle Maps and Cherry Flows

    Full text link
    We study C2C^{2} weakly order preserving circle maps with a flat interval. The main result of the paper is about a sharp transition from degenerate geometry to bounded geometry depending on the degree of the singularities at the boundary of the flat interval. We prove that the non-wandering set has zero Hausdorff dimension in the case of degenerate geometry and it has Hausdorff dimension strictly greater than zero in the case of bounded geometry. Our results about circle maps allow to establish a sharp phase transition in the dynamics of Cherry flows

    Streaming Tree Transducers

    Get PDF
    Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis problems for specification languages for transforming hierarchically structured data such as XML documents. We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming unranked ordered trees in a single pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of the model coincides with transductions definable using monadic second-order logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and checking functional equivalence are solvable for our model.Comment: 40 page

    Multithermal Analysis of a CDS Coronal Loop

    Full text link
    The observations from 1998 April 20 taken with the Coronal Diagnostics Spectrometer CDS on SOHO of a coronal loop on the limb have shown that the plasma was multi-thermal along each line of sight investigated, both before and after background subtraction. The latter result relied on Emission Measure Loci plots, but in this Letter, we used a forward folding technique to produce Differential Emission Measure curves. We also calculate DEM-weighted temperatures for the chosen pixels and find a gradient in temperature along the loop as a function of height that is not compatible with the flat profiles reported by numerous authors for loops observed with EIT on SOHO and TRACE. We also find discrepancies in excess of the mathematical expectation between some of the observed and predicted CDS line intensities. We demonstrate that these differences result from well-known limitations in our knowledge of the atomic data and are to be expected. We further show that the precision of the DEM is limited by the intrinsic width of the ion emissivity functions that are used to calculate the DEM. Hence we conclude that peaks and valleys in the DEM, while in principle not impossible, cannot be confirmed from the data.Comment: 12 pages, 3 figures, Accepted by ApJ Letter

    Applying Quantum Tomography to Hadronic Interactions

    Get PDF
    A proper description of inclusive reactions is expressed with density matrices. Quantum tomography reconstructs density matrices from experimental observables. We review recent work that applies quantum tomography to practical experimental data analysis. Almost all field-theoretic formalism and modeling used in a traditional approach is circumvented with great efficiency. Tomographically-determined density matrices can express information about quantum systems which cannot in principle be expressed with distributions defined by classical probability. Topics such as entanglement and von Neumann entropy can be accessed using the same natural language where they are defined. A deep relation exists between {\it separability}, as defined in quantum information science, and {\it factorization}, as defined in high energyphysics. Factorization acquires a non-perturbative definition when expressed in terms of a conditional form of separability. An example illustrates how to go from data for momentum 4-vectors to a density matrix while bypassing almost all the formalism of the Standard Model
    • …
    corecore