
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

7-2012

Streaming Tree Transducers
Rajeev Alur
University of Pennsylvania, alur@cis.upenn.edu

Loris D'Antoni
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

From the 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/569
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Rajeev Alur and Loris D'Antoni, "Streaming Tree Transducers", Lecture Notes in Computer Science: Automata, Languages, and
Programming 7392, 42-53. July 2012. http://dx.doi.org/10.1007/978-3-642-31585-5_8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kosmopolis

https://core.ac.uk/display/214173349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/978-3-642-31585-5_8
http://repository.upenn.edu/cis_papers/569
mailto:libraryrepository@pobox.upenn.edu

Streaming Tree Transducers

Abstract
Theory of tree transducers provides a foundation for understanding expressiveness and complexity of analysis
problems for specification languages for transforming hierarchically structured data such as XML documents.
We introduce streaming tree transducers as an analyzable, executable, and expressive model for transforming
unranked ordered trees (and hedges) in a single pass. Given a linear encoding of the input tree, the transducer
makes a single left-to-right pass through the input, and computes the output in linear time using a finite-state
control, a visibly pushdown stack, and a finite number of variables that store output chunks that can be
combined using the operations of string-concatenation and tree-insertion. We prove that the expressiveness of
the model coincides with transductions definable using monadic second-order logic (MSO). Existing models
of tree transducers either cannot implement all MSO-definable transformations, or require regular look ahead
that prohibits single-pass implementation. We show a variety of analysis problems such as type-checking and
checking functional equivalence are decidable for our model.

Disciplines
Computer Sciences

Comments
From the 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/569

http://repository.upenn.edu/cis_papers/569?utm_source=repository.upenn.edu%2Fcis_papers%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages

Streaming Tree Transducers

Rajeev Alur and Loris D’Antoni
University of Pennsylvania

February 21, 2012

Abstract

Theory of tree transducers provides a foundation for understanding expressiveness and com-
plexity of analysis problems for specification languages for transforming hierarchically structured
data such as XML documents. We introduce streaming tree transducers as an analyzable, exe-
cutable, and expressive model for transforming unranked ordered trees (and hedges) in a single
pass. Given a linear encoding of the input tree, the transducer makes a single left-to-right
pass through the input, and computes the output in linear time using a finite-state control, a
visibly pushdown stack, and a finite number of variables that store output chunks that can be
combined using the operations of string-concatenation and tree-insertion. We prove that the
expressiveness of the model coincides with transductions definable using monadic second-order
logic (MSO). Existing models of tree transducers either cannot implement all MSO-definable
transformations, or require regular look ahead that prohibits single-pass implementation. We
show a variety of analysis problems such as type-checking and checking functional equivalence
are decidable for our model.

1 Introduction

Finite-state machines and logics for specifying tree transformations offer a suitable theoretical foun-
dation for studying expressiveness and complexity of analysis problems for languages for processing
and transforming XML documents. Representative formalisms for specifying tree transductions
include finite-state top-down and bottom-up tree transducers, Macro tree transducers (MTT),
attribute grammars, MSO (monadic second-order logic) definable graph transductions, and spe-
cialized programming languages such as XSLT and XDuce [1, 2, 3, 4, 5, 6, 7, 8].

In this paper, we propose the model of streaming tree transducers (STT) which has the following
three properties: (1) Single-pass linear-time processing: an STT is a deterministic machine that
computes the output using a single left-to-right pass through the linear encoding of the input tree
processing each symbol in constant time; (2) Expressiveness: STTs specify exactly the class of
MSO-definable transductions; and (3) Analyzability: decision problems such as type checking and
checking functional equivalence of two STTs, are decidable. The last two features indicate that
our model has the commonly accepted trade-off between analyzability and expressiveness in formal
language theory. The motivation for designing streaming algorithms that can process a document
in a single pass has led to streaming models for checking membership in a regular tree language
and for querying [9, 10, 5, 11], but there is no previous model that can compute all MSO-definable
transformations in a single pass (see Section 6 for detailed comparisons of STTs with prior models).

The transducer model integrates features of visibly pushdown automata, equivalently nested word
automata [12], and streaming string transducers [13, 14]. In our model, the input tree is encoded

1

as a nested word , which is a string over alphabet symbols, tagged with open/close brackets (or
equivalently, call/return types) to indicate the hierarchical structure [9, 12]. The streaming tree
transducer reads the input nested word left-to-right in a single pass. It uses finitely many states,
together with a stack, but the type of operation applied to the stack at each step is determined
by the hierarchical structure of the tags in the input. The output is computed using a finite set of
variables that range over output nested words, possibly with holes that are used as place-holders
for inserting subtrees. At each step, the transducer reads the next symbol of the input. If the
symbol is an internal symbol, then the transducer updates its state and the output variables. If
the symbol is a call symbol, then the transducer pushes a stack symbol, along with updated values
of variables, updates the state, and reinitializes the variables. While processing a return symbol,
the stack is popped, and the new state and new values for the variables are determined using the
current state, current variables, popped symbol, and popped values from the stack. In each type
of transition, the variables are updated using expressions that allow adding new symbols, string
concatenation, and tree insertion (simulated by replacing the hole with another expression). A key
restriction is that variables are updated in a manner that ensures that each value can contribute at
most once to the eventual output, without duplication. This single-use-restriction is enforced via a
binary conflict relation over variables: no output term combines conflicting variables, and variable
occurrences in right-hand sides during each update are consistent with the conflict relation. The
transformation computed by the model can be implemented as a single-pass linear-time algorithm.

To understand the novel features of our model, let us consider two kinds of transformations.
First, suppose we want to select and output the sequence of all subtrees that match a pattern,
that is specified by a regular query over the entire input, and not just the prefix read so far.
To implement this query, the transducer uses multiple variables to store alternative outputs, and
exploiting regularity to maintain only a bounded number of choices at each step. In contrast, for
existing transducer models, either regular look ahead (that is, allowing the transducer to make
decisions based on a regular property of the suffix of the input it has not yet seen) is essential to
define such a transduction, thereby necessitating a preprocessing pass over the input (for example,
MTTs with single use restriction), or in absence of regular look ahead, a direct implementation
of the operational semantics leads to exponential growth in the size of intermediate derivations
with the length of the input (for example, MTTs and MTTs with weak finite copying restriction).
Second, suppose the transformation requires swapping of subtrees. The operations of concatenation
and tree-insertion allows an STT to implement this transformation easily. This ability to combine
previously computed answers seems to be missing from existing transducer models. We illustrate
the proposed model using examples such as reverse, swap, tag-based sorting, that the natural
single-pass linear-time algorithms for implementing these transformations correspond to STTs.

We show that the model can be simplified in natural ways if we want to restrict either the
input or the output, to either strings or ranked trees. For example, to compute transformations
that output strings it suffices to consider variable updates that allow only concatenation, and to
compute transformations that output ranked trees it suffices to consider variable updates that allow
only tree insertion. The restriction to the case of ranked trees as inputs gives the model of bottom-
up ranked-tree transducers. As far as we know, this is the only transducer model that processes
trees in a bottom-up manner, and can compute all MSO-definable transformations.

The main technical result in the paper is that the class of transductions definable using stream-
ing tree transducers is exactly the class of MSO-definable transductions. The starting point for
our result is the known equivalence of MSO-definable transductions and Macro Tree Transducers

2

with regular look-ahead and single-use restriction, over ranked trees [3]. Our proof proceeds by
establishing two key properties of STTs: the model is closed under regular look ahead and under
functional composition. These proofs are challenging due to the requirement that a transducer can
use only a fixed number of variables that can be updated by assignments that obey the single-use-
restriction rules, and we develop them in a modular fashion by introducing intermediate results (for
example, we establish that allowing variables to range over trees that contain multiple parameters
that can be selectively substituted during updates, does not increase expressiveness).

We show a variety of analysis questions for our transducer model to be decidable. Given a regular
language L1 of input trees and a regular language L2 of output trees, the type checking problem is to
determine if the output of the transducer on an input in L1 is guaranteed to be in L2. We establish
an Exptime upper bound on type checking. For checking functional equivalence of two streaming
tree transducers, we show that if the two transducers are inequivalent, then we can construct a
pushdown automaton A over the alphabet {0, 1} such that A accepts a word with equal number of
0’s and 1’s exactly when there is an input on which the two transducers compute different outputs.
Using known techniques for computing the Parikh images of context-free languages [15, 16, 17], this
leads to a NExpTime upper bound for checking functional inequivalence of two STTs. Assuming
a bounded number of variables, the upper bound on the parametric complexity becomes NP.
Improving the NExpTime bound remains a challenging open problem.

2 Transducer Model

2.1 Preliminaries

Nested Words: Data with both linear and hierarchical structure can be encoded using nested
words [12]. Given a set Σ of symbols, the tagged alphabet Σ̂ consists of the symbols a, 〈a, and a〉,
for each a ∈ Σ. A nested word over Σ is a finite sequence over Σ̂. For a nested word a1 · · · ak, a
position j, for 1 ≤ j ≤ k, is said to be a call position if the symbol aj is of the form 〈a, a return
position if the symbol aj is of the form a〉, and an internal position otherwise. The tags induce a
natural matching relation between call and return positions, and in this paper, we are interested
only in well-matched nested words in which all calls/returns have matching returns/calls. A string
over Σ is a nested word with only internal positions. Nested words naturally encode ordered trees.
The empty tree is encoded by the empty string ε. The tree with a-labeled root with subtrees
t1, . . . tk as children, in that order, is encoded by the nested word 〈a 〈〈t1〉〉 · · · 〈〈tk〉〉 a〉, where 〈〈ti〉〉 is
the encoding of the subtree ti. This transformation can be viewed as an inorder traversal of the
tree. The encoding extends to hedges also: the encoding of a hedge is obtained by concatenating the
encodings of the trees it contains. An a-labeled leaf corresponds to the nested word 〈aa〉, we will
use 〈a〉 as its abbreviation. Thus, a binary tree with a-labeled root whose left-child is an a-labeled
leaf and right-child is a b-labeled leaf is encoded by the string 〈a 〈a〉 〈b〉 a〉.

Nested Words with Holes: A key operation that our transducer model relies on is insertion of
one nested word within another. In order to define this, we consider nested words with holes, where
a hole is represented by the special symbol ?. For example, the nested word 〈a ? 〈b〉 a〉 represents
an incomplete tree with a-labeled root whose right-child is a b-labeled leaf such that the tree can
be completed by adding a nested word to the left of this leaf. We require that a nested word can
contain at most one hole, and we use a binary type to keep track of whether a nested word contains

3

a hole or not. A type-0 nested word does not contain any holes, while a type-1 nested word contains
one hole. We can view a type-1 nested word as a unary function from nested words to nested words.
The set W0(Σ) of type-0 nested words over the alphabet Σ is defined by the grammar

W0 := ε | a | 〈aW0 b〉 |W0W0,

for a, b ∈ Σ. The set W1(Σ) of type-1 nested words over the alphabet Σ is defined by the grammar

W1 := ? | 〈aW1 b〉 |W1W0 |W0W1,

for a, b ∈ Σ. A nested-word language over Σ is a subset L of W0(Σ), and a nested-word transduction
from an input alphabet Σ to an output alphabet Γ is a partial function f from W0(Σ) to W0(Γ).

Nested Word Expressions: In our transducer model, the machine maintains a set of variables
that range over output nested words with holes. Each variable has an associated binary type:
a type-k variable has type-k nested words as values, for k = 0, 1. The variables are updated
using typed expressions, where variables can appear on the right-hand side, and we also allow
substitution of the hole symbol by another expression. Formally, a set X of typed variables is a
set that is partitioned into two sets X0 and X1 corresponding to the type-0 and type-1 variables.
Given an alphabet Σ and a set X of typed variables, a valuation α is a function that maps X0 to
W0(Σ) and X1 to W1(Σ). Given an alphabet Σ and a set X of typed variables, we define the sets
Ek(X,Σ), for k = 0, 1, of type-k expressions by the grammars:

E0 := ε | a |x0 | 〈aE0 b〉 |E0E0 |E1[E0]

E1 := ? |x1 | 〈aE1 b〉 |E0E1 |E1E0 |E1[E1],

where a, b ∈ Σ, x0 ∈ X0 and x1 ∈ X1. The clause e[e′] corresponds to substitution of the hole in a
type-1 expression e by another expression e′. A valuation α for the variables X naturally extends
to a type-consistent function that maps the expressions Ek(X,Σ) to values in Wk(Σ), for k = 0, 1.
Given an expression e, α(e) is obtained by replacing each variable x by α(x), and applying the
substitution: in particular, α(e[e′]) is obtained by replacing the symbol ? in the type-1 nested word
α(e) by the nested word α(e′).

Single Use Restriction: The transducer updates variables X using type-consistent assignments.
To achieve the desired expressiveness, we need to restrict the reuse of variables in right-hand sides.
In particular, we want to disallow the assignment x := xx (which would double the length of x),
but allow the assignment (x, y) := (x, x), provided the variables x and y are guaranteed not to be
combined later. For this purpose, we assume that the set X of variables is equipped with a binary
relation η: if η(x, y), then x and y cannot be combined. This “conflict” relation is required to be
reflexive and symmetric (but need not be transitive). Two conflicting variables cannot occur in
the same expression used in the right-hand side of an update or as output. During an update, two
conflicting variables can occur in multiple right-hand sides for updating conflicting variables. Thus,
the assignment (x, y) := (〈a xa〉[y], a?) is allowed, provided η(x, y) does not hold; the assignment
(x, y) := (ax[y], y) is not allowed; and the assignment (x, y) := (ax, x[b]) is allowed, provided η(x, y)
holds. Formally, given a set X of typed variables with a reflexive symmetric binary conflict relation
η, and an alphabet Σ, an expression e in E(X,Σ) is said to be consistent with η, if (1) each
variable x occurs at most once in e, and (2) if η(x, y) holds, then e does not contain both x and

4

y. Given sets X and Y of typed variables, a conflict relation η, and an alphabet Σ, a single-use-
restricted assignment is a function ρ that maps each type-k variable x in X to a right-hand side
expression in Ek(Y,Σ), for k = 0, 1, such that (1) each expression ρ(x) is consistent with η, and
(2) if η(x, y) holds, and ρ(x′) contains x, and ρ(y′) contains y, then η(x′, y′) must hold. The set of
such single-use-restricted assignments is denoted A(X,Y, η,Σ).

At a return, the transducer assigns the values to its variables X using the values popped from
the stack as well as the values returned. For each variable x, we will use xp to refer to the popped
value of x. Thus, each variable x is updated using an expression over the variables X ∪Xp. The
conflict relation η extends naturally to variables in Xp: η(xp, yp) holds exactly when η(x, y) holds.
Then, the update at a return is specified by assignments in A(X,X ∪Xp, η,Σ).

When the conflict relation η is the purely reflexive relation {(x, x) | x ∈ X}, the single-use-
restriction means that a variable x can appear at most once in at most one right-hand side. We
refer to this special case as “copyless”.

2.2 Transducer Definition

A streaming tree transducer is a deterministic machine that reads the input nested word left-to-
right in a single pass. It uses finitely many states, together with a stack. The use of the stack is
dictated by the hierarchical structure of the call/return tags in the input. The output is computed
using a finite set of typed variables, with a conflict relation that restricts which variables can be
combined, that range over nested words and the stack can be used to store values of these variables.
At each step, the transducer reads the next symbol of the input. If the symbol is an internal symbol,
then the transducer updates its state and the nested-word variables. If the symbol is a call symbol,
then the transducer pushes a stack symbol, updates the state, stores updated values of variables in
the stack, and reinitializes the variables. While processing a return symbol, the stack is popped,
and the new state and new values for the variables are determined using the current state, current
variables, popped symbol, and popped variables from the stack. In each type of transition, the
variables are updated in parallel using assignments in which the right-hand sides are nested-word
expressions. We require that the update is type-consistent, and meets the single-use-restriction
with respect to the conflict relation. When the transducer consumes the entire input word, the
output nested word is produced by an expression that is consistent with the conflict relation. These
requirements ensure that at every step, at most one copy of any value is contributed to the final
output.

STT syntax: A deterministic streaming tree transducer (STT) S from input alphabet Σ to output
alphabet Γ consists of a finite set of states Q; a finite set of stack symbols P ; an initial state q0 ∈ Q;
a finite set of typed variables X with a reflexive symmetric binary conflict relation η; a partial
output function F : Q 7→ E0(X,Γ) such that each expression F (q) is consistent with η; an internal
state-transition function δi : Q × Σ 7→ Q; a call state-transition function δc : Q × Σ 7→ Q × P ;
a return state-transition function δr : Q × P × Σ 7→ Q; an internal variable-update function
ρi : Q × Σ 7→ A(X,X, η,Γ); a call variable-update function ρc : Q × Σ 7→ A(X,X, η,Γ); and a
return variable-update function ρr : Q× P × Σ 7→ A(X,X ∪Xp, η,Γ).

STT semantics: To define the semantics of a streaming tree transducer, we consider configurations
of the form (q,Λ, α), where q ∈ Q is a state, α is a type-consistent valuation from variables X to
typed nested words over Γ, and Λ is a sequence of pairs (p, β) such that p ∈ P is a stack symbol
and β is a type-consistent valuation from variables in X to typed nested words over Γ. The initial

5

configuration is (q0, ε, α0) where α0 maps each type-0 variable to ε and each type-1 variable to ?.
The transition function δ over configurations is defined by:

1. Internal transitions: δ((q,Λ, α), a) = (δi(q, a),Λ, α · ρi(q, a)).

2. Call transitions: δ((q,Λ, α), 〈a) = (q′, (p, α · ρc(q, a))Λ, α0), where δc(q, a) = (q′, p).

3. Return transitions: δ((q, (p, β)Λ, α), a〉) = (δr(q, p, a),Λ, α · βp · ρr(q, p, a)), where βp is the
valuation for variables Xp defined by βp(xp) = β(x) for x ∈ X.

For an input word w ∈ W0(Σ), if δ∗((q0, ε, α0), w) = (q, ε, α) then if F (q) is undefined then
so is JSK(w), otherwise JSK(w) = α(F (q)). We say that a nested word transduction f from input
alphabet Σ to output alphabet Γ is STT-definable if there exists an STT S such that JSK = f .

An STT S with variables X is called copyless if the conflict relation η equals {(x, x) | x ∈ X}.

2.3 Examples

Streaming tree transducers can easily implement standard tree-edit operations such as insertion,
deletion, and relabeling. We illustrate the interesting features of our model using operations such
as reverse, swap, and sorting based on fixed number of tags. In each of these cases, the transducer
mirrors the natural algorithm for implementing the desired operation in a single pass. In each
example, the STT is copyless.

Reverse: Given a nested word a1a2 · · · ak, its reverse is the nested word bk · · · b2b1, where for each
1 ≤ j ≤ k, bj = aj if aj is an internal symbol, bj = 〈a if aj is a return symbol a〉, and bj = a〉 if aj is
a call symbol 〈a. As a tree transformation, reverse corresponds to recursively reversing the order of
children at each node: the reverse of 〈a 〈b 〈d〉 〈e〉 b〉 〈c〉 a〉 is 〈a 〈c〉 〈b 〈e〉 〈d〉 b〉 a〉. This transduction
can be implemented by a streaming tree transducer with a single state, a single type-0 variable x,
and stack symbols Σ: the internal transition on input a updates x to a x; the call transition on
input a pushes a onto the stack, stores the current value of x on the stack, and resets x to the
empty word; and the return transition on input b, while popping the symbol a and stack value xp
from the stack, updates x to 〈b x a〉xp.

Tree Swap: Figure 1 shows the transduction that transforms the input tree by swapping the first
(in inorder traversal) b-rooted subtree t1 with the next (in inorder traversal) b-rooted subtree t2,
not contained in t1, For clarity of presentation, let us assume that the input word encodes a tree:
it does not contain any internal symbols and if a call position is labeled 〈a then its matching return
is labeled a〉.

a

a

a

b

ba

a b

b

a

t2

t1

t1

t2

Figure 1: Tree Swap

The initial state is q0 which means that the transducer has not yet encountered a b-label. In
state q0, the STT records the tree traversed so far using a type-0 variable x: upon an a-labeled

6

call, x is stored on the stack, and is reset to ε; and upon an a-labeled return, x is updated to
xp〈a x a〉. In state q0, upon a b-labeled call, the STT pushes q0 along with current x on the stack,
resets x to ε, and updates its state to q′. In state q′, the STT constructs the first b-labeled subtree
t1 in variable x: as long as it does not pop stack symbol q0, at a call it pushes q′ and x, and at a
return, updates x to xp〈a x a〉 or xp〈b x b〉, depending on whether the current return symbol is a or
b. When it pops q0, it updates x to 〈b x b〉 (at this point, x contains the tree t1, and its value will
be propagated), sets another type-1 variable x′ to xp ?, and changes its state to q1. In state q1, the
STT is searching for the next b-labeled call, and processes a-labeled calls and returns exactly as in
state q0, but now using the type-1 variable x′. At a b-labeled call, it pushes q1 along with x′ on the
stack, resets x to ε, and updates the state to q′. Now in state q′, the STT constructs the second
b-labeled subtree t2 in variable x as before. When it pops q1, the subtree t2 corresponds to 〈b x b〉.
The transducer updates x to x′p[〈b x b〉]xp capturing the desired swapping of the two subtrees t1 and
t2 (the variable x′ is no longer needed and is reset to ε to ensure copyless restriction), and switches
to state q2. In state q2, the remainder of the tree is traversed adding it to x. The output function
is defined only for the state q2 and maps q2 to x.

Tag-based Sorting: Suppose given a hedge of trees t1t2 · · · tk, and a regular pattern, we want
to rearrange the hedge so that all trees that match the pattern appear before the trees that do
not match the pattern. For example, given an address book, where each entry has a tag that
denotes whether the entry is “private” or “public”, we want to sort the address book based on this
tag: all private entries should appear before public entries, while maintaining the original order
for entries with the same tag value. Such a transformation can be implemented naturally using an
STT: variable x collects entries that match the pattern, while variable y collects entries that do
not match the pattern. As the input is scanned, state is used to determine whether the current
tree t satisfies the pattern; a variable z is used to store the current tree, and once t is read in its
entirety, based on whether or not it matches the pattern, the update (x, z := xz, ε) or (y, z := yz, ε)
is executed. The output of the transducer is the concatenation xy.

3 Properties and Variants

In this section, we note some properties and variants of streaming tree transducers aimed at under-
standing their expressiveness. First, STTs compute linearly-bounded outputs, that is, the length of
the output word is within at most a constant factor of the length of the input word. The single-
use-restriction ensures that at every step of the execution of the transducer on an input word, the
sum of the sizes of all the variables that contribute to the output term at the end of the execution,
can increase only by an additive constant.

Proposition 1 (Linear-Bounded Outputs) For an STT-definable transduction f from Σ to Γ,
for all nested words w ∈W0(Σ), |f(w)| = O(|w|).

We now examine some of the features in the definition of STTs in terms of how they contribute
to the expressiveness. First, having multiple variables is essential, and this follows from results on
streaming string transducers [13, 14]. Consider the transduction that rewrites a word w to wn (that
is, w repeated n times). An STT with n variables can implement this transduction. It is easy to
prove an STT with less than n variables cannot implement this transduction. Second, the ability
to store symbols in the stack at calls is essential. This is because nested word automata are more
expressive than classical finite-state automata over words.

7

3.1 Regular Nested-Word Languages

A streaming tree transducer with empty sets of string variables can be viewed as an acceptor of
nested words: the input is accepted if the output function is defined in the terminal state, and
rejected otherwise. In this case, the definition coincides with (deterministic) nested word automata
(NWA). The original definition of NWAs and regular nested-word languages does not need the
input nested word to be well-matched (that is, the input is a string over Σ̂), but this distinction
is not relevant for our purpose. A nested word automaton A over an input alphabet Σ is specified
by a finite set of states Q; a finite set of stack symbols P ; an initial state q0 ∈ Q; a set F ⊆ Q
of accepting states; an internal state-transition function δi : Q × Σ 7→ Q; a call state-transition
function δc : Q×Σ 7→ Q×P ; and a return state-transition function δr : Q×P×Σ 7→ Q. A language
L ⊆ W0(Σ) of nested words is regular if it is accepted by such an automaton. This class includes
all regular word languages, regular tree languages, and is a subset of deterministic context-free
languages [12].

Given a nested-word transduction f from input alphabet Σ to output alphabet Γ, the domain
of f is the set Dom(f) ⊆W0(Σ) of input nested words w for which f(w) is defined, and the image
of f is the set Img(f) ⊆ W0(Γ) of output nested words w′ such that w′ = f(w) for some w. It is
easy to establish that for STT-definable transductions, the domain is a regular language, but the
image is not necessarily regular:

Proposition 2 (Domain-Image Regularity) For an STT-definable transduction f from Σ to
Γ, Dom(f) is a regular language of nested words over Σ. There exists an STT-definable transduction
f from Σ to Γ, such that Img(f) is not a regular language of nested words over Γ.

3.2 Multi-parameter STTs

In our basic transducer model, the value of each variable can contain at most one hole. Now we
generalize this definition to allow a value to contain multiple parameters. Such a definition can
be useful in designing an expressive high-level language for transducers, and will also be used to
simplify constructions in later proofs.

We begin by defining nested words with parameters. The set H(Σ,Π) of parameterized nested
words over the alphabet Σ using the parameters in Π, is defined by the grammarH := ε | a |π | 〈aH b〉 |HH,
for a, b ∈ Σ and π ∈ Π. For example, the nested word 〈a π1 〈b〉 π2 a〉 represents an incomplete tree
with a-labeled root that has a b-labeled leaf as a child such that trees can be added to its left as
well as right by substituting the parameter symbols π1 and π2 with nested words. We can view
such a nested word with 2 parameters as a function of arity 2 that takes two well-matched nested
words as inputs and returns a well-matched nested word.

In the generalized transducer model, the variables range over parameterized nested words over
the output alphabet. Given an alphabet Σ, a set X of variables, and a set Π of parameters, the
set E(Σ, X,Π) of expressions is defined by the grammar E := ε | a |π |x | 〈aE b〉 |E E |E[π 7→ E],
for a, b ∈ Σ, x ∈ X, and π ∈ Π. A valuation α from X to H(Σ,Π) naturally extends to a function
from the expressions E(Σ, X,Π) to H(Σ,Π).

To stay within the class of regular transductions, we need to ensure that each variable is used
only once in the final output and each parameter appears only once in the right-hand side at
each step. To understand how we enforce single-use-restriction on parameters, consider the update
x := xy associated with a transition from state q to state q′. To conclude that each parameter can

8

appear at most once in the value of x after the update, we must know that the sets of parameters
occurring in the values of x and y before the update are disjoint. To be able to make such an
inference statically, we associate, with each state of the transducer, an occurrence-type that limits,
for each variable x, the subset of parameters that are allowed to appear in the valuation for x in
that state. Formally, given parameters Π and variables X, an occurrence-type ϕ is a function from
X to 2Π. A valuation α from X to H(Σ,Π) is said to be consistent with the occurrence-type ϕ if for
every parameter π ∈ Π and variable x ∈ X, if π ∈ ϕ(x) then the parameterized nested word α(x)
contains exactly one occurrence of the parameter π, and if π 6∈ ϕ(x) then π does not occur in α(x).
An occurrence-type from X to Π naturally extends to expressions in E(Σ, X,Π): for example, for
the expression e1e2, if the parameter-sets ϕ(e1) and ϕ(e2) are disjoint, then ϕ(e1e2) = ϕ(e1)∪ϕ(e2),
else the expression e1e2 is not consistent with the occurrence-type ϕ. An occurrence-type ϕ′ from
variables X to Π is said to be type-consistent with an occurrence-type ϕ from Y to Π and an
assignment ρ from Y to X, if for every variable x in X, the expression ρ(x) is consistent with the
occurrence-type ϕ and ϕ(ρ(x)) = ϕ′(x). Type-consistency ensures that for every valuation α from
Y to H(Σ,Π) consistent with ϕ, the updated valuation α · ρ from X to H(Σ,Π) is guaranteed to
be consistent with ϕ′.

Now we can define the transducer model that uses multiple parameters. A multi-parameter
STT S from input alphabet Σ to output alphabet Γ consists of states Q, initial state q0, stack
symbols P , and state-transition functions δi, δc, and δr as in the case of STTs. The components
corresponding to variables and their updates are specified by a finite set of typed variables X
equipped with a reflexive symmetric binary conflict relation η; for each state q, an occurrence-type
ϕ(q) : X 7→ 2Π, and for each stack symbol p, an occurrence-type ϕ(p) : X 7→ 2Π; a partial output
function F : Q 7→ E(X,Γ,Π) such that for each state q, the expression F (q) is consistent with η
and ϕ(q)(F (q)) is the empty set; for each state q and input symbol a, the update function ρi(q, a)
from variables X to X over Γ is consistent with η and it is such that the occurrence-type ϕ(δi(q, a))
is type-consistent with the occurrence-type ϕ(q) and the update ρi(q, a); for each state q and input
symbol a, the update function ρc(q, a) from variables X to X over Γ is consistent with η and it
is such that, if δc(q, a) = (q′, p) the occurrence-types ϕ(p) and ϕ(q′) are type-consistent with the
occurrence-type ϕ(q) and the update ρc(q, a); for each state q and input symbol a and stack symbol
p,, the update function ρr(q, p, a) from variables X ∪ Xp to X over Γ is consistent with η and it
is such that the occurrence-type ϕ(δr(q, p, a)) is type-consistent with the occurrence-type ϕ(q) and
ϕ(p) and the update ρr(q, p, a).

Configurations of a multi-parameter STT are of the form (q,Λ, α), where q ∈ Q is a state, α is
a valuation from variables X to H(Γ,Π) that is consistent with the occurrence-type ϕ(q), and Λ
is a sequence of pairs (p, β) such that p ∈ P is a stack symbol and β is a valuation from variables
X to H(Γ,Π) that is consistent with the occurrence-type ϕ(p). The clauses defining internal, call,
and return transitions are as in case of STTs, and the transduction JSK is defined as before. In the
same as before way we define a copyless multi-parameter STT.

In most of the following proofs we will use the following technique. We observe that every
parallel assignment can be expressed as a sequence of elementary updates induced by the assignment
grammar. We define this set of elementary updates to be: 1) constant assignment: x := w where w
does not contain variables, 2) concatenation x := yz where y and z are variables, and 3) parameter
substitution: x := y[z] (x := y[π 7→ z] for multi-parameters STTs), where y and z are variables. In
the following proofs we will only consider elementary updates.

Now we establish that multiple parameters do not add to expressiveness:

9

Theorem 3 (Multi-parameter STTs) A nested-word transduction is definable by an STT iff it
is definable by a multi-parameter STT.

Proof. Given an STT S constructing a multi-parameter STT S′ is trivial. We use the
parameter set Π = {?}, given a state q in S, we will have a corresponding state q in S′ and for
every type-0 variable x in q, ϕ(q, x) = ∅ while for every type-1 variable y will have ϕ(q, y) = {?}.

We now prove the other direction. Given a multi-parameter STT S = (Q, q0, P,Π, X, η, ϕ, F, δ, ρ)
with |X| = n and |Π| = k, we construct an STT S′ = (Q′, q′0, P

′, X ′, η′, F ′, δ′, ρ′). We need to sim-
ulate the multi-parameter variables using only one hole variables. We do this by using more hole
variables to represent a single multi-parameter variable and maintaining in the state some infor-
mation on how to combine them.

The idea is that we maintain a compact representation of every multi-parameter variable. Con-
sider a variable x with value 〈a〈bπ1b〉〈c〉〈bπ2b〉a〉. One possible way to represent x using multiple
variables, each with only one parameter in its value, is the following: x1 = 〈a?a〉, x2 = 〈b?b〉〈c〉,
x3 = 〈b?b〉, and maintaining in the state the information regarding how to combine these three
values to get x. For this, we use a function of the form f(x1) = (x2, x3), f(x2) = π1, f(x3) = π2

that tells us to replace the ? in x1 with x2x3 and the holes in x2, x3 with π1, π2, respectively. Intu-
itively the function f encodes the shape of the tree for every variable in X. The state also needs
to remember the root of the tree corresponding to each variable. We do this with an additional
function g: g(x) = x1 means that x1 is the root of the symbolic tree representing x.

We now formalize this idea. X ′ will contain at most (2k − 1)n variables of type-1 and n
variables of type-0. At every step, assuming we are in state q, every variable x will have 2|ϕ(x)|−1
corresponding type-1 variables that represent it if ϕ(x) 6= ∅, and one type-0 variable if ϕ(x) = ∅.
Since ϕ(x) ≤ k at every step we can assume that for every variable x ∈ X, there are exactly 2k− 1
variables in S′ corresponding to it. We denote this set by V (x).

The states in Q′ are triplets containing: q ∈ Q, g : X 7→ X ′, f : X ′ 7→ (X ′ × X ′) ∪ Π ∪ {ε}.
At every step in the computation, each multi-parameter variable in X is represented as a tree over
X ′. The function f maintains the symbolic shape of such a tree. The function g tells us, given a
variable in X what is the variable in X ′ representing the root of the tree. We are going to have
|Q| · (|X ′|2 + |Π|+ 1)|X

′| · |X ′||X| states, where |X ′| = 2|Π| · |X|.
There is still a technicality to deal with: at every step, to maintain the counting argument, we

need to compress the shape f using the observation that we do not need internal nodes to represent
only one parameter. Whenever this happens, we can just replace the node with its child, since one
variable is enough to represent one parameter. We call this step compression.

We now define the unfolding f∗ of the function f that, given a variable in x ∈ X ′ provides the
corresponding multi-parameter content that it represents:

• f∗(x) = x if f(x) = ε

• f∗(x) = x[πi] if f(x) = πi

• f∗(x) = x[f∗(y)f∗(z)] if f(x) = (y, z)

We then maintain the following invariant at every point in the computation: the evaluation of
f∗(g(x)) in S′ is exactly the same as the evaluation of x in S.

At the beginning every variable is initialized to ε and so we can represent it with g(x) = x′

(where x′ ∈ X ′ is the type-0 variable corresponding to x ∈ X) and f(x′) = ε. Here the desired
invariant about f∗ clearly holds.

10

x5

x3

x2

x1 x′′

x3

x5

x2 x7x1

x6

x7

x4 x4

x6

x′

x := ax[π1 ← π1π5]

Figure 2: Parameter tree for the variable x = π1π2π3π4. In this case (on the left) g(x) = x5 and
f(x5) = (x1, x6), f(x6) = (x2, x7), f(x7) = (x3, x4), f(x1) = π1, f(x2) = π2, f(x3) = π3, f(x4) = π4.
Each variable is of type-1. After the update we have that x5 := ax5 and we take two fresh variables
x′, x′′ to update the tree to the one on the right where we set f(x′′) = (x1, x

′), f(x′) = π5. Since
we have 5 parameters and 9 nodes, the counting argument still holds. Before the update f∗(x5)
evaluates to π1π2π3π4 and after the update f∗(x5) evaluates to aπ1π5π2π3π4.

Let us give the construction at every possible elementary update. Consider a state (q, f, g) (we
only write the parts that are updated and skip the trivial cases):

x := w: where w is a constant in the same way as we show in the previous example the content of
x can be summarized with |ϕ(x)| variables.

x := yz: we want to reflect the update in the functions f and g. First of all we copy the variables
in V (y), V (z) into two disjoint subsets in V (x) (we can do this since for the consistency
restriction ensures that ϕ(y) + ϕ(z) ≤ k. We then need to create a new node to be the new
root of the two subtrees referring to y and z and update consistently the shapes. By induction
hypothesis y and z use 2(ϕ(y) + ϕ(z)) − 2 ≤ 2k − 2 variables. So we can still use at least 1
variable. We take unused x′1 ∈ V (x). Then g′(x) = x′1, f

′(x′1) = c(g(y))c(g(z)) where c(v) is
the copy in V (x) of v. Compress the result.

x := y[π 7→ z]: as before we copy the variables in V (y), V (z) into two disjoint subsets in V (x).
We update the variable containing π in y to the tree representing z and we update the
corresponding variable. Basically after having copied, take x′ such that f(x′) = π and x′ ∈
V (x) belongs to the tree rooted in c(g(y)), then f ′(x′) = f(g(z)), x′ := x′[g(z)]. The counting
argument still holds due to the bounded number of parameters.

Figure 2 shows an example of update involving a combination of elementary updates.
We still have to show what happens when we have a call or a return. It’s actually easy to see

that the functions at every point can be stored on the stack at a call and recombined at a return
with a similar construction, since all variables are reset at calls.

We need to define the conflict relation η′ such that the single use restriction is preserved. For
all x 6= y ∈ X such that η(x, y) holds, then for all x′ ∈ V (x), y′ ∈ V (y), η′(x′, y′) holds. Also for all
x′ ∈ X ′, η′(x′, x′) holds. Since all the assignments that involve conflicting variables are reflected
by assignment over the corresponding trees, this construction is consistent with the new conflict
relation. �

11

3.3 Bottom-up Transducers

A nested-word automaton is called bottom-up if it resets its state along the call transition: if
δc(q, a) = (q′, p) then q′ = q0. The well-matched nested word sandwiched between a call and its
matching return is processed by a bottom-up NWA independent of the outer context. It is known
that bottom-up NWAs are as expressive as NWAs over well-matched words [12]. We show that a
similar result holds for transducers also: there is no loss of expressiveness if the STT is disallowed
to propagate information at a call to the linear successor. Note than every STT reinitializes all its
variables at a call. An STT S is said to be a bottom-up STT if for every state q ∈ Q and symbol
a ∈ Σ, if δc(q, a) = (q′, p) then q′ = q0.

Theorem 4 (Bottom-up STTs) Every STT-definable transduction is definable by a bottom-up
STT.

Proof. Let S be an STT with states Q, initial state q0, stack symbols P , variables X with a
conflict relation η, output function F , state-transition functions δi, δc, and δr, and variable-update
functions ρi, ρc, and ρr. We will construct an equivalent bottom-up STT S′.

Given a nested-word w = a1a2 . . . ak, for each position 1 ≤ i ≤ k, let lwm(w, i) be the (well-
matched) nested word aj , . . . ai, where j is the minimal index l such that aj , . . . ai is well-matched.
Formally given a well-matched nested word w = a1a2 . . . ak, let us inductively define lwm(w, i)
in the following manner: let lwm(w, 0) = ε, and for 1 ≤ j ≤ k, if position j is internal, then
lwm(w, j) = wj−1aj ; if position j is a call position, then lwm(w, j) = ε; and if position j is a return
position with the matching call at position i < j, then lwm(w, j) = lwm(w, i−1)ailwm(w, j−1)aj .
Each such lwm(w, j) is well-matched, and represents the subword from the innermost unmatched
call position up to position j. For a well-matched word w, lwm(w, k) equals w. Moreover let
lc(w, i) denote the last unmatched call at position i. If we the first position j in lwm(w, i) is
greater then 1, then lc(w, i) = j − 1 and otherwise it is undefined.

Since S′ must reinitialize its state after a call, at every step, the state will keep track of the
state of S for every possible starting state after the call. Intuitively, S′ delays the application of
a call transition of S, and computes the summary of all possible executions of S on the subword
between a call and the corresponding matching return, and this summary can be combined with
the information stored on the stack to continue the simulation after the return. For this purpose,
the state of S′ keeps a function f : Q 7→ Q. When reading the i-th symbol of w, f(q) represents
the state that S would have reached reading the subword lwm(w, i) starting in state q. The initial
value of f is the identity function f0 that maps each state q to q. On an internal symbol a, the
function f is updated to f ′ such that for each state q, f ′(q) = δi(f(q), a). At a call symbol 〈a, the
current value of f is stored on the stack, along with the symbol a, and f is reset to f0. Given the
current value f , to process a return symbol b〉, if the popped value is f ′ along with the call symbol
a, then the updated value f ′′(q) is defined for each state q as follows. The value f ′(q) = q1 is the
relevant state of S before the matching call lc(w, i− 1). Let δc(q1, a) = (q2, p). If f(q2) = q3, then
we know that the transducer S goes from state q2 to state q3 on the subword sandwiched between
the matching call and return lwm(w, i− 1). Then, the updated state f ′′(q) should be δr(q3, p, b).

Now let us explain how S′ achieves summarization of variable updates of S. When processing
a position i for each variable x ∈ X and state q ∈ Q, we will have a variable xq that contains the
value of x assuming S started reading lwm(w, i) in state q. Initially, and upon every call, for each
variable x we have xq =? or xq = ε, depending on its type. At every input a we perform for each

12

variable xq, the update ρ(f(q), a, x) with each variable y appearing in the right-hand side replaced
by yq.

We now need to define a conflict relation η′ and show that the updates are consistent with this
relation. For all x, y ∈ X, for all q 6= q′ ∈ Q, η′(xq, yq′) holds; and for all q ∈ Q, for all x, y such that
η(x, y) holds, η′(xq, yq) holds. Clearly all the right-hand side variables of a single assignment are
variables corresponding to the same state, and so, if every expression originally is consistent with η,
then every new expression is consistent with η′. We now shot that if η′(x, y) holds, right-hand side
for x′ contains x, and right-hand side for updating y′ contains y, then η(x′, y′) holds. All variables
appearing in right-hand sides for updating variables labeled with the same state, always correspond
to the same state. So the two ways we can have a conflict among two assignments are either if two
variables xq1 , yq1 ∈ X ′ such that η(x, y), appear in two different assignment to wq and zq′ for some
w, z ∈ X, or xq, yq′ ∈ X ′ such that q 6= q′, appear in two different assignment to wq1 and zq′1 for
some w, z ∈ X and q1 6= q′1. For the reason of before the second case is trivial since q1 is different
from q′1. In the former case, we have indeed that either q = q′ or they are different. But in both
the cases one of the conflict rules applies so, again we are done. �

3.4 Regular Look Ahead

Now we consider an extension of the STT model in which the transducer can make its decisions
based on whether the remaining (well-matched) suffix of the input word belongs to a regular
language of nested words. Such a test is called regular look ahead. A key property of the STT
model is the closure under regular look ahead. Furthermore, in presence of regular-look-ahead,
conflict relation can be trivial, and thus, copyless STTs suffice.

Definition of Regular Look Ahead: Given a nested-word w = a1a2 . . . ak, for each position
1 ≤ i ≤ k, let wms(w, i) be the (well-matched) nested word ai, . . . aj , where j is the maximal index
l such that ai, . . . al is well-matched. Thus, wms(w, i) is the longest well-matched suffix starting at
position i. Then, a look-ahead test at step i can test a regular property of the word wms(w, i). Let L
be a regular language of nested words, and let A be a (deterministic) bottom-up NWA for reverse(L)
(such an NWA exists, since regular languages are closed under the reverse operation [12]). Then,
while processing a nested word, testing whether the word wms(w, i) belongs to L corresponds to
testing whether the state of A after processing reverse(wms(w, i)) is an accepting state of A. Since
regular languages of nested words are closed under intersection, the state of a single bottom-up
NWA A reading the input word in reverse can be used to test membership of the well-matched
suffix at each step in different languages. Also note that since A is bottom-up, its state after
reading reverse(wms(w, i)) is same as its state after reading reverse(ai . . . ak). This motivates the
following formalization. Let w = a1 . . . ak be a nested word over Σ, and let A be a bottom-up NWA
with states R processing nested words over Σ. Given a state r ∈ R, we define the r-look-ahead
labeling of w to be the nested word wr = r1r2 . . . rk over the alphabet R such that for each position
1 ≤ j ≤ k, the call/return/internal type of rj is the same as the type of aj , and the corresponding
symbol is the state of the NWA A after reading reverse(aj . . . ak) starting in state r. Then the
A-look-ahead labeling of w, is the nested word wA = wr0 . An STT-with-regular-look-ahead consists
of a bottom-up NWA A over Σ with states R, and an STT S from R to Γ. Such a transducer defines
a streaming tree transduction from Σ to Γ: for an input word w ∈ W (Σ), the output JS,AK(w) is
defined to be JSK(wA).

Closure under Regular Look Ahead: The critical closure property for STTs is captured by the

13

next theorem which states that regular look-ahead does not add to the expressiveness of STTs. This
closure property is key to establishing that STTs can compute all MSO-definable transductions.

Theorem 5 (Closure under Regular-Look-Ahead) The transductions definable by STTs with
regular look-ahead are STT-definable.

Proof. Let A be an NWA with states R, initial state r0, stack symbols P , and state-transitions
functions δ′′i , δ

′′
r , δ
′′
r , and a bottom-up STT S = (Q, q0, P,X, η, F, δ, ρ) over R. We construct an STT

S′ = (Q, q0, P,X
′, η′, F ′, δ′, ρ′) equivalent to S. The STT S′ will be bottom-up.

We use again the definition lwm(w, i) that we defined in the proof of theorem 4 denoting
Informally given a nested-word w = a1a2 . . . ak, for each position 1 ≤ i ≤ k, let lwm(w, i) be
the (well-matched) nested word aj , . . . ai, where j is the minimal index l such that aj . . . ai is
well-matched. This definition will be useful in establishing correctness of our constructions using
induction. One useful observation is that for a well-matched nested word w, and an STT S, if
δ∗((q,Λ, α), w) = (q′,Λ′, α′), then Λ = Λ′, and in fact this value does not influence the execution of
S. Hence, for a well-matched nested word w, we can omit the stack, and write δ∗((q, α), w) = (q′, α′).

When processing the i-th symbol of the input nested word w, the transition of the STT S
depends on the state of A after reading the suffix wms(w, i). Since the STT S′ cannot determine
this value based on the prefix read so far, it needs to simulate S for every possible choice of r ∈ R.
We will discuss different state components maintained by S′ to achieve this goal. The STT S′ keeps
in every state a function h : R 7→ R and a function f : R 7→ Q such that after reading the i-th
symbol of the input word w, for every state r of A, h(r) gives the state of A when started in state
r after reading reverse(wms(w, i)), and f(r) gives the state of S after reading lwm(wr, i).

In the initial state, h is the identity function that maps each state r to itself, and f is the
constant function that maps each r to the initial state q0. Suppose the current functions are f and
h, and the next symbol is an internal symbol a. The updated values f ′(r) and h′(r), for each state
r, are calculated as follows. Let r1 = δ′′i (r, a). This means that if A starts reading the current
subword in reverse in state r, it labels the current position with r1. Then h′(r) should be set to
h(r1). Note that f(r1) gives the current state of S under the assumption that A labels the subword
so far starting in state r1, and this state is updated using the transition function of S using the
symbol r1: f ′(r) is set to δi(f(r1), r1). At a call symbol a, the current values of f and h are stored on
the stack, along with the symbol a, and the two functions are reset to their respective initial values.
Suppose the current functions are f and h, the next symbol is a return symbol b, and the popped
values are functions f ′ and h′ together with call symbol a. The updated value h′′(r) is computed
for each state r as follows. Let δ′′c (r, b) = (r1, p). If h(r1) = r2, then we know that the NWA A goes
from state r1 to state r2 on the reversed subword sandwiched between the matching call and return.
Then, the state of A before the call (assuming the state after the return is r) is r3 = δ′′r (r2, p, a).
Then, the desired h′′(r) is h′(r3) (note: the pushed value h′ summarizes the subword before the
call). The updated value f ′′(r) can now be computed by propagating information forwards. The
state q1 = f ′(r3) gives the state of S before the call assuming the subword upto the call is processed
starting in state r3. Note that the state of S after the call is guaranteed to be its initial state, and
thus, does not depend on the context (this is where we use the fact that S is bottom-up). The
state q2 = f(r2) gives the state of S before the return, and this correctly captures the state of S
on the subword sandwiched between the call and return. Set f ′′(r) to δ′r(q2, (q1, r3), r1).

Finally, let us describe how S′ keeps track of the variables. The set of variables is X ′ = {xr|x ∈
X, r ∈ R}. After processing the i-th input symbol xr contains the value of x in S after reading

14

lwm(wr, i).
Let us now define the new conflict relation. For all x, y ∈ X such that η(x, y) and for all r ∈ R,

we have that η′(xr, yr) (preserves the conflicts of S) and for all x, y ∈ X and for all r1 6= r2 ∈ R,
we have that η′(xr1 , yr2) (at every point only 1 r is relevant for the final output). At every step we
update all the variables using the states induced by the transition relation δ of A. While reading
the symbol a, if δ(q′, a) = q (reading backward), we will update the variables labeled with q′ using
those of q. Notice that two “sets” of variables may use the same “set” if δ(q1, a) = δ(q2, a) = q.
However only one of these “set” will be used when we reach the end of the input. In fact F ′ will
only use the variables labeled with r0.

We now show that this construction preserves single use restriction. The proof is very similar to
that of bottom-up STTs. Clearly all the right-hand side variables of a single assignment are taken
from the same state and so if there was no conflict relation on a single right hand side, we still
have no conflicts on single right-hand sides. The harder part to show is that if xη′y, x′ := fun(x)
and y′ = fun(y) then x′ηy′ holds. As we said the all the variables on the right-hand sides of
variables labeled with the same states always have the same state. So the two ways we can have a
conflict among two assignments are either if two variables xr1 , yr1 ∈ X ′ such that xηy, appear in
two different assignments to wr and zr′ for some w, z ∈ X, or xr, yr′ ∈ X ′ such that r 6= r′, appear
in two different assignment to wr1 and zr′1 for some w, z ∈ X and r1 6= r′1. For the reason of before
the second case is trivial since r1 is different from r′1. In the former case we have to do a bit of
reasoning. We have indeed that either r = r′ or they are different. But in both the cases one of
the conflict rules applies so, again we are done. �

Copyless STTs with RLA: Recall that an STT is said to be copyless if η only contains the
reflexive relation. In an STT, an assignment of the form (x, y) := (z, z) is allowed if x and y are
guaranteed not to be combined, and thus, if only one of x and y contributes to the final output.
In presence of regular-look-ahead test, the STT can check which variable contribute to the final
output, and avoid redundant updates, and can thus be copyless.

Theorem 6 (Copyless STT with RLA) A nested-word transduction f is STT-definable iff it
is definable by a copyless STT with regular-look-ahead.

Proof. One direction is immediate consequence of the closure under RLA of STTs. We now
need to prove the other direction. Let S be a bottom-up STT with states Q, initial state q0, stack
symbols P , variables X with conflict relation η, output function F , state-transition functions δi,
δc, and δr, and variable-update functions ρi, ρc, and ρr. We create a copyless STT S′ and an
RLA automaton A such that JS′, AK(w) is equivalent JSK(w). S′ hast states Q′, initial state q′0,
stack symbols P ′, variables X, output function F , state-transition functions δ′i, δ

′
c, and δ′r, and

variable-update functions ρ′i, ρ
′
c, and ρ′r. S

′ will not be bottom-up.
We construct a bottom-up automaton A over an alphabet R such that a state r ∈ R contains

information about which variables will contribute to the final output. S′ will then use the same set
of variables of S but at every point it will update only those contributing to the final output, and
resets the others.

Let us first of all prove that if we only update the variables contributing to the final output,
the update function is copyless. This is the same as proving that the set of contributing variables
does not form a conflict. But this is the definition of conflict relation! This can easily verified using
induction with the output function as base case.

15

Now we show the construction of the automaton A. Since A has to be bottom-up when reading a
call (return in the input) we will have to reset the state and this will require some extra bookkeeping.
Particularly after a call we will have to compute the contributing variables without knowing (due
to the reset) what’s the contributing set of variables at the call. We now show the construction.

Every state r is going to be a tuple ((s, h1, h2), f, g) where s is the next symbol of the input
string, f is a partial function from Q×2X to 2X , g is a partial function from Q to Q, h1 is a partial
function from 2X to 2X , and h2 is a partial function from Q× 2X to 2X . Given the input word w,
after processing the i-th symbol in the input (remember that A reads backward) then

• f(q, Y) = Y ′ if, when S reads wms(w, i) starting in state q, assuming the set of contributing
variables at the end of wms(w, i) is Y , Y ′ is the current set of relevant variables.

• g(q) = q′ if, when S reads wms(w, i) starting in state q, ends in q′.

• h1(q, Y) = Y ′ if, when S reads wms(w, i) starting in state q, assuming the set of contributing
variables at the end of wms(w, i) is Y , and lc(w, i+ 1) = j, then Y ′ is the set of contributing
variables at the end of wms(w, j).

• h2(q, Y) = Y ′ if, when i is call position, and S reads wms(w, i) starting in state q, assuming
the set of contributing variables at the end of wms(w, i) is Y , then Y ′ is the set of contributing
variable at position ret(w, i). ret(w, i) is the position of the return matching the call in
position i.

The information stored in h1 and h2 is useful when processing at call symbols, and is used by
S′ to maintain the necessary set of relevant variables as it explores the hierarchical structure.

The initial state r0 ∈ R of A will be ((ε, h10, h20), f0, g0) where h10, h20 are always undefined,
f0(q, Y) = Y and g0(q) = q. The initial state q′0 of S′ will be (q0, {xf}).

We now show how the state of A is updated. We assume we are in the state ((s, h1, h2), f, g)
(h1 and h2 are defined only on calls) and we show how to compute ((s′, h′1, h

′
2), f ′, g′) (remember

that A reads the word backward) on input s′.

s′ is an internal symbol: in this case f ′, g′ will be simply updated using the transition function
of S in the following way: f ′(q, Y) = Y ′ where δi(q, s

′) = q′, f(q′, Y) = Y ′′ and Y ′ is the
union of the variables in the RHS of ρi(q, s

′, x) for all x ∈ Y ′′ and g′(q) = g(q′).

s′ is an return symbol: processing a return backward, is actually a call for A. Since A is bottom
up the state that we will reach will always be r0. The current state along with the return
symbol is propagated on the stack (that is, f ′ = f , g′ = g, h′1 = h1 and h′2 = h2).

s′ is an call symbol: let’s call for simplicity fp, gp, h1p, h2p, sp the components received from
the stack at the call (a return reading backward). f ′(q1, Y1) = Y2 and g′(q1) = q4 and
h′1(q1, Y1) = Y and h′2(q1, Y1) = Y3 where, δc(q1, s

′) = (q0, p), g(q0) = q2, δr(q2, p, sp) = q3,
gp(q3) = q4, fp(q3, Y1) = Y3 and Yp, Y are the set of stack and normal variables on the right
hand side of ρr(q2, p, sp, x) for all x ∈ Y3, and Y2 are the variables on the right hand side of
ρc(q1, s

′, x) for all x ∈ Yp.

Now we need to define the update functions for S′. The states Q′ of S′ are pairs over Q ×
(2X ∪{xf}). After processing the i-th position in the input, S′ is in state (q, y), if: 1) q is the state
reached by S when processing lwm(w, i) starting in q0 (since it is bottom-up), and 2) Y is the set

16

of variables contributing to the final output at the end of wms(w, i+ 1). We assume without loss
of generality that the output in each state is some special assignment to a variable xf . The stack
symbols P ′ of S′ are tuples over P ×Σ×(2X ∪{xf})×(2X ∪{xf}). The role of the four components
will be clear in the construction.

The initial state of S′ is q′0 = (q0, {xf}). Let’s assume S′ is in state (q, Y) and it reads the input
symbol a = ((s, h1, h2), f, g).

s is an internal symbol: δ′i((q, Y), a) = (q′, Y) where q′ = δi(q, s) and ρ′i((q, Y), a, x) = ρi(q, s, x)
if x ∈ f(q, Y), and ρ′i((q, Y), a, x) = ε otherwise.

s is an call symbol: δ′c((q, Y), a) = (q0, Y
′), (p, a, Y, Y ′′) where (q, p) = δc(q, s), Y

′ = h1(q, Y),
Y ′′ = h2(q, Y), ρ′c((q, Y), a, x) = ρc(q, s, x) if x ∈ f(q, Y), and ρ′c((q, Y), a, x) = ε otherwise.

s is an return symbol: δ′r((q, Y), (p, ap, Y
′, Y ′′), a) = (q′, Y ′) where q′ = δr(q, p, s) and

ρ′r((q, Y), (p, ap, Y
′, Y ′′), a, x) = ρr(q, p, s, x) if x ∈ Y ′′, or ρ′r((q, Y), (p, ap, Y

′, Y ′′), a, x) = ε
otherwise.

This concludes the proof. �

3.5 Closure Under Composition

Now we proceed to show that STTs are closed under sequential composition. Many of our results
rely on this crucial closure property.

Theorem 7 (Composition Closure) Given two STT-definable transductions, f1 from Σ1 to Σ2

and f2 from Σ2 to Σ3, the composite transduction f2 · f1 from Σ1 to Σ3 is STT-definable.

Proof. Using theorems 6 and 4, we consider S1 to be a copyless STT with RLA and S2 to
be a bottom-up STT. We are now given a copyless STT S1 = (Q1, q01, P1, X1, F1, δ1, ρ1) with
RLA automaton A and a bottom-up STT S2 = (Q2, q02, P2, X2, F2, δ2, ρ2). We construct a multi-
parameter STT S with RLA automaton A. We then use theorem 3 to remove the multi-parameters
and closure under RLA (theorem 5) to show that there exists an equivalent STT.

The main idea is that we want to simulate the possible executions of S2 on the output of S1

in a single execution. We can do this by keeping a summary of S2 in the state and a bigger set of
variables. At every point our transducer has to remember what the output of S2 would be reading
the content of the variables in S1 starting in every possible state. A crucial property of the content
of the variables in S1 is that they contain well-matched words. In this way we do not need to collect
any stack information for the possible simulations of S2.

Let’s show the intuition with an example. Let’s say S has only one variable x and S′ has only
one variable y. At some point in the computation on input a, x (whose value was ?) is updated
to ax[?b]. We would like to reflect this update on y but we do not know in which state we will
start processing the value contained in x (assuming this will contribute to the final output), and
we still do not know the value that will be stored in the parameter. The first piece of information
we need to track is that of knowing, for every possible state q, which state we will reach in S2

processing the string in x starting reading its content from state q. The problem is actually harder
since we have the parameter. But we can extend this idea and keep a function f in the state,
that in this particular moment will store f(q1, q2, x) = δ2(q1, a), δ2(q2, b) that are the states that
we reach reading the contents of x before and after the parameter, assuming we start reading the

17

part before the ? in q1 and the one after the ? in q2. Now we need to know how y gets updated.
Clearly the update of y depends on which state we start reading x. Again we need consider for
every pair of states that process the part on the left and on the right of the ?. We show an example
of how we update when reading on the right of the parameter. Let’s assume ρ2(q, y, b) = cy. At
this point we do not know what is the previous value of y! Fortunately we can fix this by treating
the old value of y as a parameter. This tells us that the parameter alphabet will at least contain
a parameter for every variable in X2. We will have then a variable g(q′, q, (x,R), y) that is the
value of y after reading the value on the right of the ? in x starting to read the left part in state
q′ and the right part in state q. This variable at the beginning will be simply set to y′, a symbolic
parameter representing the value of y right after processing the value that will be stored in the ?.
We will then perform the updates following the transition relation. So for the case ρ2(q, y, b) = cy
the value of g(q′, q, (x,R), y) will now be cy′. Notice, since S2 is bottom up, if there are pending
calls, a summary of the part on the left of a parameter g(q, (x, L), y) will simply contain the value
of y when reading the last well-matched stretch before the ? starting in q0. If there aren’t pending
calls, then it will contain the value of y when reading (x, L) starting in state q.

We now give the formal construction. We denote with Xi,j the set of type-j variables in Xi.
The states Q of S = S2 · S1 are tuples (q, f0, f1l, f1r) where q ∈ Q1, f0 : Q2 × X1,0 7→ Q2, f1l :
Q2×X1,1 7→ Q2 and f1r : Q2×Q2×X1,1 7→ Q2. f0(q, x) = q′ when, if x contains α ∈W0(Σ2), then
δ∗2((q, , ε,), α) = (q′, ε,). f1l(q1, x) = q′1 when, if x contains α?β ∈W1(Σ2) then δ∗2((q1, ε,), α) =
(q′1, ,). f1r(q1, q2, x) = q′2 when, if x contains α?β ∈ W1(Σ2) and δ∗2((q1, ε,), α) = (,Λ,) then
δ∗2((q2,Λ,), β) = (q′2, ε,).

The function f0 (respectively f1l and f1r) keeps track of which state S2 would reach reading
the content of a variable of type-0 (respectively type-1) of S1 starting in any given state.

We now show how we maintain the invariants defined above at every update. We assume we are
in state (q, f0, f1l, f1r) and we only write the parts that are updated. As before we only consider
elementary updates. We analyze the type-1 case (the 0 case is easier). At every step we indicate
with f ′l , f

′
r, g
′ the updated functions.

x := w: where w is a constant α?β ∈ W1(Σ2). Let (q′1,Λ,) = δ∗2((q1, ε,), α) and (q′2, ε,) =
δ∗2((q2,Λ,), β) in f ′1l(q1, x) = q′1 and f ′1r(q1, q2, x) = q′2.

x := yz: we consider without loss of generality the case where y is a type-0 variable and x, z are
type-1. We simply use the function stored in the previous state to “synchronize” the states
of y and z.
Let q′1 = f0(q1, y) in f ′1l(q1, x) = f1l(q

′
1, z) and f ′1r(q1, q2, x) = f1r(q

′
1, q2, z).

x := y[z]: we consider the case where x, y, z are type-1 variables (the other one is simpler). We
need to “synchronize” the left parts and the right parts to update the function f .
Let q′1 = f1l(q1, y) and q′2 = f1r(q

′
1, q2, z) in f ′1l(q1, x) = f1l(q

′
1, z) and f ′1r(q1, q2, x) =

f1r(q1, q
′
2, y).

We now define what are the variables X of S. Variables are going to be defined by the union of
the following tuples: g0 : Q2×X1,0×X2, g1l : Q2×X1,1×X2 and g1r : Q2×Q2×X1,1×X2. Variable
values range over Σ3 ∪ Π where Π = {x′|x ∈ X2} ∪ {?}. g0(q1, x, y) is the variable representing
the value of y in S2 after reading the content of x (of type-0) of S1 starting in state q1 ∈ Q2.
The parameters appearing y are symbolic representation of the variable values of S2 when it starts
processing the value stored in the variable x. For example, if g0(q1, x, y) contains the value ay′, it

18

means that y′ is the parameter representing the value of y in the state q1 when we start reading
the content of x. g1l(q1, x, y) is the value of y after reading the content of x (of type-1) on the left
of the hole assuming we start reading the content of x in state q1. Notice again that, since S2 is
bottom up, if there are pending calls, this value will be the same for every q ∈ Q2 since we only
consider the last well-matched stretch in the left part of x. g1r(q1, q2, x, y) is the value of y after
reading the content of x on the right of the ? assuming we start reading the left part of x in state
q1 and the right part in state q2.

The careful reader will notice that the parameter alphabet also contains ?. Indeed S2 will be
using type-1 variable and we still need to deal with this kind of update. When ? appears in the
g representation of a variable we do not have to worry too much about it and we can treat it as
a normal parameter. The problem occurs in the following situation: let’s say at a particular step
g(q, x, y) = y′ but y is a type-1 variable. This can only mean that the ? appears in y′. Now let’s
assume the next update is of the form y := y[a]. As we can see we still do not have the ? appearing
in the representation of y. We record this fact with a function and delay the substitution using
an extra variable for the parameters. We give an intuition of how to handle this issue but we do
not show the full construction for sake of readability. The next paragraph provides an informal
explanation of how to perform symbolic updates and substitution in the summarized variables.

As an example, suppose that at some point the values x and y are x′, y′ (they both have holes).
We use the variables x? =?, y? =? to represent their parameters. Then, after processing a well-
matched subword, we may have an update of this form x := abax[ccy[a?c]]bb and y := ab?. Notice
that the reflexivity of η ensures that x′ and y′ can appear at most once in the valuation of a variable
at any point. This configuration will be captured by (assuming q is fixed) x := abaxbb, x? = ccy,
y? = a?c and y = ab?. In addition we need to keep information on where the actual parameter
of every variable is. We use a function p : Q × X 7→ X∗ where p(q, x) doesn’t contain the same
symbol twice for every x and q (this implies boundedness). The function p will record p(q, x) = xy
and p(q, y) = ε. This means that if now we want to reflect the update x := x[a] we need to perform
x := x[x′ 7→ x?[y′ 7→ y?[? 7→ a]]]. In the following we ignore the details regarding the variables of
the form x?. Notice that they do not change the form of the construction since are only used as
place holder for the summarization.

Now let’s come back to our variable summarization. We now show the updates performed in
S for every elementary update in S′. We assume we are in a state qcur = (q, f0, f1l, f1r) (we only
write the parts that are updated). We analyze the type-1 cases. We assume the occurrence-type
function ϕ : Q ×X 7→ Π to be well defined according to the following assignments (we will prove
consistency later).

x := w: where w is a constant γ?β ∈W1(Σ2). We simply need to simulate S2 on the content of x
taking advantage of the fact that it is well-matched.
Let αr(x) = x′ for all x ∈ S2. Let (,Λ, α1) = δ∗2((q1, ε, αr), γ) and (, ε, α2) = δ∗2((q2,Λ, αr), γ).
Then we have g′1l(q1, x, y) := α1(y) and g′1r(q1, q2, x, y) := α2(y).

x := yz: we consider without loss of generality the case where y is a type-0 variable and x, z are
type-1. We need to substitute the values of the variables after reading y in the corresponding
parameters in z in order to simulate the concatenation.
Let q′1 = f0(q1, y) and q′′1 = f1l(q

′
1, z) in g′1l(q1, x, u) := g1l(q

′
1, z, u)[u′i 7→ g0(q1, y, ui)] for all

ui ∈ ϕ(qcur, g1l(q
′
1, z, u)) and g′1r(q1, q2, x, u) := g1r(q

′
1, q2, z, u).

x := y[z]: we consider the case where x, y, z are type-1 variables. We need to “synchronize” the

19

variables representing the left and right parts in a way similar to the previous case.
Let q′1 = f1l(q1, y), q′2 = f1r(q

′
1, q2, z), q

′′
1 = f1l(q

′
1, z), q

′′
2 = f1r(q1, q

′
2, y) in g′1l(q1, x, u) :=

g1l(q
′
1, z, u)[u′i 7→ g1l(q1, y, ui)] for all u′i ∈ ϕ(qcur, g1l(q

′
1, z, u)) and

g′1r(q1, q2, x, u) := g1r(q1, q
′
2, y)[u′i 7→ g1r(q

′
1, q2, z, ui)] for all u′i ∈ ϕ(qcur, g1r(q1, q

′
2, y)).

We now need to show that the above construction preserves the single use restriction. First of
all we need to show that the assignments are consistent with respect to the parameters. We actually
show a slightly stronger result that will be useful later: the set of variables in X2 corresponding to
the parameters appearing in the right-hand side of a single variable g(. . .) never violates the conflict
relation η2 of X2. Formally, for every x ∈ X, q ∈ Q, u, v ∈ ϕ(q, x), (u, v) 6∈ η2 and particularly
u 6= v. This results is intuitively immediate from the definition of conflict relation. Let’s assume
by contradiction that at some point in the computation some parameters u′, v′ appearing in ϕ(q, x)
and uη2v. This means that there exists a run of S2 in which two u and v flow into x. But this
cannot happen otherwise we violate the single use restriction.

We now need to show that there exists a conflict relations η over the new set of variables
consistent with the proposed updates. We know that the assignments in S1 are copyless. Thanks
to this we know that every time we have an assignment of the form x := yz or x := y[z] then y 6= z.
Inspecting the updates we perform it is easy to see that, for whatever η we will pick the reflexivity
will not be violated (the same variable will not appear twice on the same right-hand side).

We now add the following constraints and show that they are consistent with the assignments.
For all q1, q

′
1, q2, q

′
2 ∈ Q2, x ∈ X1,0, y ∈ X1,1, u, v ∈ X2, if uη2v then 1) g0(q1, x, u)ηg0(q′1, x, v), 2)

g1l(q1, y, u)ηg1l(q
′
1, y, v), and 3) g1r(q1, q2, y, u)ηg1l(q

′
1, q
′
2, y, v). Let’s assume there exists an assign-

ment which violates the constraints (we indicate in bold the meta-variables of S and in italic those
of S2). There are two possibilities:

1. xηy and they both occur on a right-hand side;

2. xηy, x′ := fun(x), y′ = fun(y) but x′ηy′ doesn’t hold.

We already ruled out the first case when x = y. When x 6= y we want that no assignment violates
the above constraints. We check that this is true for the three elementary updates cases. The
constant is trivial. For the case x := yz we have that two variables can only be in conflict inside
the parameter substitution part (the z part) since there is only one summary of x. As we showed
before, the parameters in ϕ(qcur, g1l(q

′
1, z, u)) cannot represent two variables u, v ∈ X2 such that

uη2v so, this case is ruled out.
We now need to deal with the second possibility. Before starting is worthy pointing out that

every variable x ∈ X1 will appear in at most one of the assignments of S2 due to the copyless
restriction. We want to show that it cannot happen that two variables that are in conflict are
assigned to variables that are not in conflict. Let’s try to analyze when two variables x,y assigned
to different variables can be in conflict. The first case is that of x = y. In our settings it means
that either 1) x = g1l(q

′
1, z, u), 2) x = g0(q1, y, ui) or 3) x = g1r(q

′
1, q2, z, u). In case 1 we have that

x′ = g′1l(q, x, u) and y′ must be g′1l(q
′, x, u) for some q 6= q′, and this means that x′ηy′. The same

reasoning holds for cases 2 and 3. When x 6= y one of the cases of the conflict relation η defined
above must hold. In all cases there are two possibilities: either there was a conflict over 2 different
variables in S2 or we are summarizing in two different states. Let’s notice that the conflict must be
among two variables of the same kind gi(...)ηgi(...). We can then rule out cases 1 and 3 where the
conflict is trivially also on the left-hand side. We still have to analyze the case where the conflict is

20

in variables over g0. q1 and y are fixed so the only case is where x = g0(q, y, u) and y = g0(q, y, v)
and uη2v. But even in this case the left hand side will be in conflict because it has the same form:
x′ = g0(q1, x, u) and y′ = g0(q1, x, v). For the case v := w[z] the argument is very similar.

Again we have to deal with calls and returns, but these as usual can be processed storing more
information on the stack (functions f0, f1l, f1r and variables). As in the proof of multi-parameter
STT we will store on the stack all the information regarding the variables stored on the stack and
at a return we will use them to construct the new values for the state. This can be easily done
since at every call the variables get stored on the stack and reset. We can in fact do the same with
our variables of S. Using an argument similar to the previous one, the assignments will not violate
the single use restriction. Notice that the fact that the variables are reset at calls is crucial for this
construction.

Our final machine will be a multi-parameter STT with RLA. Since we showed that multi-
parameter and RLA are feature that the model can simulate (see theorems 3 and 5) we are done.
�

3.6 Restricted Inputs

A nested word captures both linear and hierarchical structure. There are two natural classes of
nested words: strings are nested words with only linear structure, and ranked trees are nested
words with only hierarchical structure. Let us consider how the definition of STT can be simplified
when the input is restricted to these two special cases.

Mapping Strings: Suppose we restrict the inputs to contain only internal symbols, that is, strings
over Σ. Then the STT cannot use its stack, and we can assume that the set P of stack symbols is
a singleton set. This restricted transducer can still map strings to nested words (or trees) over Γ
with interesting hierarchical structure, and hence, is called a string-to-tree transducer. This leads
to the following definition: a streaming string-to-tree transducer (SSTT) S from input alphabet Σ
to output alphabet Γ consists of a finite set of states Q; an initial state q0 ∈ Q; a finite set of typed
variables X; a partial output function F : Q 7→ E0(X,Γ) such that for each state q, a variable x
appears at most once in F (q); a state-transition function δi : Q × Σ 7→ Q; and a variable-update
function ρi : Q × Σ 7→ A(X,X, η,Γ). Configurations of such a transducer are of the form (q, α),
where q ∈ Q is a state, and α is a type-consistent valuation for the variables X. The semantics
JSK of such a transducer is a partial function from Σ∗ to W0(Γ). We notice that in this setting the
copyless restriction is enough to capture MSO completeness since the model is closed under RLA
(i.e. a reflexive η is enough).

Theorem 8 (Copyless String-To-Tree STT are Closed under RLA) The transductions de-
finable by copyless SSTTs with regular look-ahead are also definable by copyless SSTTs.

Proof. Let A be an DFA with states R, initial state r0, and state-transitions function δA over an
input alphabet Σ. Given a copyless string-to-tree STT S = (Q, q0, X, F, δ, ρ) over R, we construct
an equivalent copyless STT S′ = (Q′, q′0, Z, F

′, δ′, ρ′) over Σ. Clearly since the input is a string we
can consider S to only have transitions of the form δi and variable updates of the form ρi that for
simplicity we will denote by δ and ρ.

The transition of the STT S at a given step depends on the state of A after reading the reverse
of the suffix. Since the STT S′ cannot determine this value based on the prefix, it needs to simulate
S for every possible choice. For a string w = a1 . . . ak, and a state r ∈ R, define the string wr over

21

R to be equal to r1r2 . . . rk such that for each position 1 ≤ j ≤ k, the corresponding symbol is the
state of the DFA A after reading reverse(aj . . . ak) starting in state r. At the end of the string we
will be interested in wA = wr0 .

We will discuss different state components maintained by S′ in Q′. Every state in Q′ contains
a function h : R 7→ R and a state f : R 7→ Q such that after reading the j-th symbol, for every
state r of A, h(r) gives the state of A when started in state r after reading reverse(w1 . . . wj), and
f(r) gives the state of S after reading (w1 . . . wj)r. The state will also contain two functions g and
p that we will discuss later. In the initial state q′0, h is the identity function that maps each state
r to itself, and f is the constant function that maps each r to the initial state q0.

Suppose the current functions are f and h, and the next symbol is a symbol a. The updated
values f ′(r) and h′(r), for each state r, are calculated as follows. Let r1 = δA(r, a). This means
that if A starts reading the current subword in reverse in state r, it labels the current position
with r1. Then h′(r) should be set to h(r1). Note that f(r1) gives the current state of S under the
assumption that A labels the subword so far starting in state r1, and this state is updated using
the transition function of S using the symbol r1: f ′(r) is set to δ(f(r1), r1).

Finally, let us describe how S′ keeps track of the variables. For each state r of A and variable x
of S, S′ keeps a copy g(r, x) that is supposed to capture the value of x assuming the next symbol
is labeled with r. Let us see how these values can be updated when processing a symbol a. If
r1 = δ′A(r, a) then the updated values g′(r,−) are obtained from g(r1,−) by applying the variable-
update function ρ(f(r1), r1). The problem is that there may be another state r′ with r1 = δ′i(r

′, a),
and this implies that the updated values g′(r′,−) also depend on g(r1,−). This sharing poses a
challenge since the update in S′ needs to be copyless. Starting with g(r, x) = g(r′, x), the variable-
update assignments can add output symbols at the two ends of this string in different manners for
g(r, x) and g(r′, x).

Our solution relies on a symbolic representation and a careful analysis of sharing. First of all
we will need multi-parameters STTs to be able to represent variables. We will create a copyless
multi-parameter STT and then use the fact that the translation from multi-parameter STT to STTs
preserves the copyless property. The STT S′ uses a set Z of variables which store actual values of
output strings, and a “shape” function g : R×X 7→ T (Z) (where be is the set of ordered trees over
Z, even though we will only need trees where every variable appears at most once). The number
of variables in Z that we need will be explained shortly. Given a valuation of all the z-variables,
we can substitute these values in g to get the value for each variable of S for a given state-label r.

What we really collect in the shape function g(r, x) = z(z1, z2), for example, is a way to
use the variables to get the current valuation of x assuming the next symbol is r. For example
the current value of x assuming the next symbol is r in this case is z[π1 7→ z1, π2 7→ z2]. This
example shows that we need multi-parameter STTs. In particular our parameter alphabet will be
Π = {?} ∪ {π1, . . . , π|X|} where ? is the actual parameter of the variable we are representing and
{πi} is the parameter representing the i-th children of a node in the tree. In our case, if a variable
contains a parameter πi, it contains also πj for every j < i and they appear in order.

We can immediately se that the parameter ? will appear in some position of the tree (we will
force it to be a leaf) that may change during the computation. This tells us that we need a new
function in the state recording the position of ?. We use a function p : R×X 7→ Z ∪ {ε} that tells
us which variable in the tree contains the ?. p(r, x) is ε when x is of type-0. p(r, x) = z means that
the variable z contains a value of the form α?β.

A tree t over Z is said to be repetition-free if no symbol occurs twice in t. Given two repetition-

22

free trees t and t′, a tree s is a maximal shared prefix-subtree between t and t′ if (1) if there exists
two extensions of s, s1, s2 that are subtrees of t and t′ (a tree s′ is an extension of a tree s if they
can be made equal by deleting zero or more subtrees from s′), (2) s is not a proper subtree of any
s′ (s is a subtree of s′ but they are not the same), such that s′ is a shared prefix-tree of both t and
t′, and (3) s contains at least one node. Given two repetition-free trees t and t′, let N(t, t′) denote
the number of maximal shared prefix-subtree between t and t′.

Our representation maintains the following invariants for the shapes:

1. Each shape g(r, x) is repetition-free.

2. For all states r, r′,
∑

x,y∈X N(g(r, x), g(r′, y)) is at most |X|.

3. The shapes are compressed: if the subtree z1(. . . , z2(. . .), . . .) occurs in a shape g(r, x) and
z2 is not equal to p(r, x), then there must be a shape g(r′, y) which either contains z1 but
not a subtree of the form z1(. . . , z2(. . .), . . .) or contains z2 but not a subtree of the form
z1(. . . , z2(. . .), . . .). In the case where z2 is equal to p(r, x) we require that z1 has more than
one child.

4. ?s are not shared: for all r, x, if p(r, x) = z, then z is not a shared and it is a leaf in g(r, x).

5. No shape contains more than |Π|+ 1 leaves.

The first invariant ensure the bounded size of shapes. Notice that the second invariant implies
that for x 6= y, for each r, g(r, x) and g(r, y) are disjoint. The second invariant implies that for
every state r, the tree g(r, x), for all x cumulatively, can have a total of |X||R| maximal shared
prefix-subtree with respect to all other strings. The compression assured by the third invariant then
implies that the sum

∑
x∈X |g(r, x)| is bounded by |X| + 2|X||R|. As a result it suffices to have

|R|(|X|+ 2|X||R|) variables in Z. The fourth invariant helps us dealing with variable substitution.
Notice that this invariants implies that the variables p(r, x) never contain any parameter other than
?. The fifth invariant guarantees the well formedness of our assignments.

Given a shape g with parameter function p, and an internal symbol a, to compute the updated
values g′(r, x) and p′(r, x), we need to consider the right-hand side ρ(f(r1), r1)(x), for r1 = δA(r, a),
and replace each variable y with the current shape g(r1, y). As in case of the proof of the lemma,
we split the update into a sequence of simpler updates.

Given a shape g(r, x) we denote with c(r, x, z′) the sequence of children of the subtree t of
g(r, x) such that the root of t is z′. In the following, whenever not stated, we assume that
at end of every update a “normalization” is applied to avoid violation of the invariants 3 and
4. For the third invariant this means that, if after an update we have a shape g(r, x) with a
subtree z(z1 . . . , zi−1, zi, zi+1, . . . zn), such that both z and zi occur only in this shape we nor-
malize the shape in the following way: 1) z is set to z[πi 7→ zi] and 2) g(r, x) is updated to
z(z1 . . . , zi−1, c(r, x, zi), zi+1, . . . zn) and the parameters in z are consistently renamed. Similarly for
the case where zi contains ? and i = n = 1.

For what concern the fourth invariant, the normalization works as follows. If after an update
we have a shape g(r, x) such that p(r, x) = z is a shared variable (by construction it can only be a
leaf), we do the following: 1) for every r′, x′ such that p(r′, x′) = z, generate a fresh variable zr′,x′

and set it to ?, 2) update z to z[? 7→ π1] 3) in every shape g(r′, x′) where z appears update the
subtree rooted in z inserting zr′,x′ as the only child and set p(r′, x′) to zr′,x′ .

We analyze a richer set to elementary updates to better understand the construction.

23

Consider the case x := 〈axb〉. If g(r1, x) has root z. If z does not occur in any other g(r′, y),
then we update g′(r, x) to g(r1, x), and update z to 〈azb〉. If z does occur in some other g(r′, y),
then we use a “fresh” symbol zf that does not occur in any g(,), and update the shape g′(r, x)
to zf (g(r1, x)), and set zf to 〈aπ1b〉. Assuming g satisfies the three shape invariants, it is easy to
show that the updated shape continues to satisfy the invariants. The case of appending a symbol
to x is similar.

Consider the case (x, y) := (y, x). We swap the values of g(r, x) and g(r, y), and this clearly
maintains all the invariants. The reset to ε case is also trivial.

Consider the assignment (x, y) := (xy, ε) (where without loss of generality x is of type-1 and y
is type-0). Suppose g(r1, x) has root zx, and g(r1, y) has root zy. We have four possible cases in
which we update g(r, x), g(r, y) in different ways:

• none of zx and zy occurs in some other g(r′, x′). In this case we set zx to zxzy and we
update g′(r, x) to zx(c(r, x, zx), c(r, y, z′y)). Doing this we also have consistently renumber the
parameters in zx (we will ignore this detail from now on). We now have zy unused so we can
assign it to g′(r, y) and update it to ε. We do actually have to be careful. In fact we want
to preserve the invariant that for all r′, x′, p(r′, x′) is a leaf (for the sharing invariant we will
normalize later). In this case nothing bad can happen since y is a type-0 variable, but if it
was of type 1 we would have had to consider the case where p(r1, y) was equal to xy and
avoid to merge it with other variables. This case is really similar to the case when both zx
and zy are shared.

• zx occurs in some other g(r′, x′) while zy does not. We can’t update zx since it would also
change its value in its other occurrences. We need therefore to remember the update in the
shape. We set zy to π1zy (where zy parameter are shifted by 1) and we update g′(r, x) to
zy(g(r1, x), c(r, y, zy)). Since the assignment does not violate the third invariant we can take
a fresh variable zf that we use to represent the value of y and we update it to ε. We then
assign g′(r, y) to z′f .

• zy occurs in some other g(r′, x′) while zx does not. Similar to previous case.

• both zx and zy occur in some other g(r′, x′), g(r′′, y′) respectively. Even this case is similar. We
take a fresh zf and update it to zxzy. We consistently update g′(r, x) to zf (g(r1, x), g(r1, y)).
The third invariant clearly holds so we can take a free variable to update g′(r, y).

Now let’s consider the assignment (x, y) := (x[y], ?) (where without loss of generality x and
y are of type-1. The updates are going to be similar to those of the previous case. However we
need to use the function p to understand how to plug the shapes together). Suppose p(r1, x) is zpx,
g(r1, y) has root zy and p(r1, x) is zpy,.

We have four possible cases in which we update g(r, x), g(r, y) in different ways:

• none of zpx and zy occurs in some other g(r′, x′). In this case we set zpx to zpx[? 7→zy] and we
update g′(r, x) to g(r1, x) where we replace the subtree rooted in zpx with g(r1, y). We now
have that zy is unused so we can assign it to g′(r, y) and update it to ε. To record the position
of the parameter we update p′(r, x) to p(r1, y) if different from zy and we leave unchanged
otherwise. p′(r, y) is set to (zy, 0).

• zpx occurs in some other g(r′, x′) or zpy does. This case violates the fourth invariant, so it
can’t occur.

24

• zy occurs in some other g(r′, x′) while zpx, z and zpy do not. In this case we set zpx to zpx[? 7→π1]

and we update g′(r, x) to g(r1, x) where we replace the subtree rooted in zpx with zpx(g(r1, y)).
Now if the third invariant is violated we can compress zpx we can apply the normalization and
get a free variable zf otherwise we have it already. To record the position of the parameter
we update p′(r, x) to r1, y if different from (zf , 0) and we leave unchanged otherwise. p′(r, y)
is set to (zf , 0).

�

Mapping Ranked Trees: In a ranked tree, each symbol a has a fixed arity k, and an a-labeled
node has exactly k children. Ranked trees can encode terms, and existing literature on tree trans-
ducers focuses primarily on ranked trees. Ranked trees can be encoded as nested words of a special
form, and the definition of an STT can be simplified to use this structure. For simplicity of no-
tation, we assume that there is a single 0-ary symbol 0 6∈ Σ, and every symbol in Σ is binary.
The set B(Σ) of binary trees over the alphabet Σ is then a subset of nested words defined by the
grammar T := 0 | 〈a T T a〉, for a ∈ Σ. We will use the more familiar tree notation a〈tl tr〉, instead
of 〈a tl tr a〉, to denote a binary tree with a-labeled root and subtrees tl and tr as children. The
definition of an STT can be simplified in the following way if we know that the input is a binary
tree. First, we do not need to worry about processing of internal symbols. Second, we restrict
to bottom-up STTs due to their similarity to bottom-up tree transducers, where the transducer
returns, along with the state, values for variables ranging over output nested words, as a result of
processing a subtree. Finally, at a call, we know that there are exactly two subtrees, and hence, the
propagation of information across matching calls and returns using a stack can be combined into
a unified combinator: the transition function computes the result corresponding to a tree a〈tl tr〉
based on the symbol a, and the results of processing the subtrees tl and tr.

A bottom-up ranked-tree transducer (BRTT) S from binary trees over Σ to nested words over
Γ consists of a finite set of states Q; an initial state q0 ∈ Q; a finite set of typed variables X
equipped with a conflict relation η; a partial output function F : Q 7→ E0(X,Γ) such that for each
state q, the expression F (q) is consistent with η; a state-combinator function δ : Q×Q× Σ 7→ Q;
and a variable-combinator function ρ : Q × Q × Σ 7→ A(Xl ∪ Xr, X, η,Γ), where Xl denotes the
set of variables {xl |x ∈ X}, Xr denotes the set of variables {xr |x ∈ X}, and conflict relation
η extends to these sets naturally. The state-combinator extends to trees in B(Σ): δ∗(0) = q0

and δ∗(a〈tl tr〉) = δ(δ∗(tl), δ
∗(tr), a). The variable-combinator is used to map trees to valuations

for X: α∗(0) = α0, where α0 maps each type-0 variable to ε and each type-1 variable to ?,
and α∗(a〈tl tr〉) = ρ(δ∗(tl), δ

∗(tr), a)[Xl 7→ α∗(tl)][Xr 7→ α∗(tr)]. That is, to obtain the result of
processing the tree t with a-labeled root and subtrees tl and tr, consider the states ql = δ∗(tl) and
qr = δ∗(tr), and valuations αl = α∗(tl) and αr = α∗(tr), obtained by processing the subtrees tl
and tr. The state corresponding to t is given by the state-combinator δ(ql, qr, a). The value α∗(x)
of a variable x corresponding to t is obtained from the right-hand side ρ(ql, qr, a)(x) by setting
variables in Xl to values given by αl and setting variables in Xr to values given by αr. Note that
the consistency with conflict relation ensures that each value gets used only once. Given a tree
t ∈ B(Σ), let δ∗(t) be q and let α∗(t) be α. Then, if F (q) is undefined then JSK(t) is undefined, else
JSK(t) equals α(F (q)) obtained by evaluating the expression F (q) according to valuation α.

Theorem 9 (Expressiveness of Ranked Tree Transducers) A partial function from B(Σ) to
W0(Γ) is STT-definable iff it is BRTT-definable.

25

Proof. We give a sketch for the constructions. We first show that given a BRTT S from B(Σ)
to W0(Γ) we can construct a STT S′. This translation is quite easy. At every call we store on the
state the current information. Since the input is a binary tree we only need |X| variables, where
X is the set of variables of S. Let’s assume we are in the state i right after a call. Now all the
variables are reset and we can process the left child. After that we store the computation on the
stack of the right child. At its return we will have the values of Xl on the stack and those of Xr in
the variables so we can combine them. Now that we read the matching return of i we can continue
the computation in the same way.

We know from theorem 4 that bottom-up STTs are as expressive as STTs. Given a bottom-up
STT S we construct a BRTT S′. Again we know the trees are binary and since S is bottom-up it
resets its computation at every call. We omit the details of the proof but we give some intuition.
Since the tree is ranked there will not be internal symbol. It should be easy to identify, by inspection
of the STT rules, the set of leaves and the corresponding computation. This gives us the first rules
in S′. Now we need to construct the internal nodes rules. This can be done in a similar way to that
for leaves. We only need to inspect all the return rules and use the state popped from the stack for
the computation regarding first child and the current state for the one regarding the second child.
�

3.7 Restricted Outputs

Let us now consider how the transducer model can be simplified when the output is restricted to
the special cases of strings and ranked trees. The desired restrictions correspond to limiting the set
of allowed operations in expressions used for updating variables.

Mapping Nested Words to Strings: Each variable of an STT stores a potential output frag-
ment. These fragments get updated by addition of outputs symbols, concatenation, and insertion
of a nested word in place of the hole. If we disallow the substitution operation, then the STT
cannot manipulate the hierarchical structure in the output. More specifically, if all variables of
an STT are type-0 variables, then the STT produces outputs that are strings over Γ. The set of
expressions used in the right-hand sides can be simplified to E0 := ε | a |x0 |E0E0. That is, each
right-hand side is a string over Γ ∪X. Such a restricted form of STT is called a streaming tree-to-
string transducer (STST). While less expressive than STTs, this class is adequate to compute all
tree-to-string transformations, that is, if the final output of an STT is a string over Γ, then it does
not need to use holes and substitution:

Theorem 10 (STST Expressiveness) A partial function from W0(Σ) to Γ∗ is STT-definable iff
it is STST-definable.

If we want to compute string-to-string transformations, then the STT does not need a stack
and does not need type-1 variables. Such a transducer is both an SSTT and an STST, and this
restricted class coincides with the definition of streaming string transducers (SST) [14].

Mapping Nested Words to Ranked Trees: Suppose we are interested in outputs that are
binary trees in B(Γ). Then, variables of the transducer can take values that range over such
binary trees, possibly with a hole. The internal symbols, and the concatenation operation, are no
longer needed in the set of expressions. More specifically, the grammar for the type-0 and type-1

26

expressions can be modified as:

E0 := 0 |x0 | a〈E0E0 〉 |E1[E0]

E1 := ? |x1 | a〈E0E1 〉 | a〈E1E0 〉 |E1[E1],

where a ∈ Γ, x0 ∈ X0 and x1 ∈ X1. To define transformations from ranked trees to ranked trees,
we can use the model of bottom-up ranked-tree transducers with the above grammar.

4 Expressiveness

The goal of this section is to prove that the class of nested-word transductions definable by STTs
coincides with the class of transductions definable using Monadic Second Order logic (MSO). Our
proof relies on the known equivalence between MSO and Macro Tree Transducers over ranked trees.

4.1 MSO for Nested Word Transductions

Formulas in monadic second-order logic (MSO) can be used to define functions from (labeled)
graphs to graphs [2]. We adapt this general definition for our purpose of defining transductions
over nested words. A nested word w = a1 . . . ak over Σ is viewed as an edge-labeled graph Gw with
k + 1 nodes v0 . . . vk such that (1) there is a (linear) edge from each vj−1 to vj , for 1 ≤ j ≤ k,
labeled with the symbol aj ∈ Σ, and (2) for every pair of matching call-return positions i and j,
there is an unlabeled (nesting) edge from vi−1 to vj−1. The monadic second-order logic of nested
words is given by the syntax:

φ := a(x, y) |X(x) |x y |φ ∨ φ | ¬φ | ∃x.φ | ∃X.φ

where a ∈ Σ, x, y are first-order variables, and X is a second-order variable. The semantics is
defined over nested words in a natural way. The first-order variables are interpreted over nodes in
Gw, while set variables are interpreted over sets of nodes. The formula a(x, y) holds if there an
a-labeled edge from the node x to node y (this can happen only when y is interpreted as the linear
successor position of x), and x y holds if the nodes x and y are connected by a nesting edge.

An MSO nested-word transducer Φ from input alphabet Σ to output alphabet Γ consists of a
finite copy set C, node formulas φc, for each c ∈ C, each of which is an MSO formula over nested
words over Σ with one free first-order variable x, and edge formulas φc,d and φc,da , for each a ∈ Γ
and c, d ∈ C, each of which is an MSO formula over nested words over Σ with two free first-order
variables x and y. Given an input nested word w, consider the following output graph: for each
node x in Gw and c ∈ C, there is a node xc in the output if the formula φc holds over Gw, and for
all such nodes xc and yd, there is an a-labeled edge from xc to yd if the formula φc,da holds over Gw,
and there is a nesting edge from xc to yd if the formula φc,d holds over Gw. If this graph is the graph
corresponding to the nested word u over Γ then JΦK(w) = u, and otherwise JΦK(w) is undefined. A
nested word transduction f from input alphabet Σ to output alphabet Γ is MSO-definable if there
exists an MSO nested-word transducer Φ such that JΦK = f .

By adapting the simulation of string transducers by MSO [18, 13], we show that the computation
of an STT can be encoded by MSO, and thus, every transduction computable by an STT is MSO
definable.

Theorem 11 (STT-to-MSO) Every STT-definable nested-word transduction is MSO-definable.

27

Proof. Consider a copyless STT S with RLA automaton A. The labeling of positions of the input
word with states of the RLA automaton can be expressed in MSO. The unique sequence of states
and stack symbols at every step of the execution of the transducer S over a given input nested word
w can be captured in MSO using second order existential quantification. Thus, we assume that
each node in the input graph is labeled with the corresponding state of the STT while processing
the next symbol. The positions corresponding to calls and returns are additionally labeled with
the corresponding stack symbol pushed/popped.

i+1

stack variables

variables

jj−10 k

OutputReturnCall

ii−1

Internal

xo

xi?

xpo

xi

xpi

xo?

xpi?

xpo?

C

ε

ε

xp := x
x := ε x := xxp[ε] x[b]

ε

ε

ε

ε

ε

ε

ε

b

ε

x := ax[c?]

a

c

ε

ε

ε

ε

ε

ε

Figure 3: Encoding STT computation in MSO

We explain the encoding using an example shown in Fig. 3. Suppose the STT uses one variable
x of type-1. The corresponding MSO transducer has eight copies in the copy set (four for each
variable). Every variable at every step is represented by 4 nodes in the copy set called input,
output, input? and output?. At every step i the value of each variable corresponds to the sequence
of symbols labeling the unique path starting at the input copy and ending at the output copy
inserting a ? labeled link between the input? and output? nodes. The value of the variable when
stored on the stack (xp in this example) stored on the top-of-the-stack at a given step i is similarly
captured by the sequence of symbols labeling the unique path starting at its input copy in column
i and ending at the output copy in the same column.

We explain now how variable updates at each step are captured. Consider an internal position
i, and consider the variable assignment x := ax[c?]. This means that the value of x for column i is
the value of x in column i− 1, preceded by the symbol a, where we add a c before the parameter
position in i − 1. To process this assignment, we insert an a-labeled edge from the input node of
x in column i to the input node of x in column i− 1, we insert an c-labeled edge from the input?
node of x in column i − 1 to the input? node of x in column i (this basically shift the parameter
position), we insert an ε-labeled edge from the output? node of x in column i to the output? node

28

of x in column i− 1 and we insert an ε-labeled edge from the output node of x in column i− 1 to
the output node of x in column i.

To understand how the values of the variables are propagated on the stack, again see Figure 3.
At the call step i+ 1, the assignment xp := x in which x is stored on the stack is reflected by the
ε-labeled edge from the input node of xp to input node for x. The other edges are similar to before.
Note that the updates until this step do not use xp, and thus, there cannot be any edge connecting
the input/output nodes for xp in column i − 1 (where we already have nodes for xp even though
they do not appear in the figure). In fact, the value of xp in column i is preserved unchanged until
the corresponding matching return position will be found. At the return step j, the value of x can
depend on the values of x in column j − 1, and the value of xp on the top stack, which is captured
by the input/output nodes for xp in column j−1. Even though it is not shown in figure, at position
j we have to add ε edges from the values of xp at position j to the values of xp at position i to
represent the value of xp that now is on the top of the stack.

At step 0, each variable is instantiated with ε by adding an ε-labeled edge from its input node
to input? node and from its output? node to output node.

To represent the final output, we need an additional column. In the example, the output is x[b].
So we mark the first edge of x by a special symbol C to indicate where the output string starts and
we add a b-labeled edge from the input? node of x to the output? node of x. We also have to link
it to the previous values with ε edges.

Note that in this exposition, we have assumed that in the MSO transducer, edges can be labeled
with strings over the output alphabet (including ε) instead of single symbols. It is easy to show
that allowing strings to label the edges of the output graph does not increase the expressiveness
of MSO transducers. Also note that not every node will appear in the final output string. An
MSO transducer able to remove the useless edges and nodes can be defined. Using closure under
composition we can then build the final transducer.

Some extra attention must be paid to add the matching edges in the output. Fortunately the
output at every point is always a well-matched word, and so the matching relation is induced by
single assignments (the matching edges are always between nodes in the same column). �

Nested Words as Binary Trees: Nested words can be encoded as binary trees. This encoding
is analogous to encoding of unranked trees as binary trees. Such an encoding increases the depth
of the tree by imposing unnecessary hierarchical structure, and thus, is not suitable for processing
of inputs. However, it is useful to simplify proofs of subsequent results about expressiveness. The
desired transduction nw bt from W0(Σ) to B(Σ) is defined by

nw bt(ε) = 0

nw bt(aw) = a〈nw bt(w) 0 〉
nw bt(〈aw1 b〉w2) = a〈nw bt(w1) b〈nw bt(w2) 0 〉 〉

Note that the tree corresponding to a nested word w has exactly one internal node for each position
in w. Observe that nw bt is a one-to-one function., and in particular, the encodings of the two nested
words aa and 〈a a〉 differ. We can define the inverse partial function bt nw from binary trees to
nested words as follows: given t ∈ B(Σ), if t equals nw bt(w), for some w ∈ W0(Σ) (and if so,
the choice of w is unique), then bt nw(t) = w, and otherwise bt nw(t) is undefined. The next
proposition shows that both these mappings can be implemented as STTs.

29

Proposition 12 (Nested-Words Binary-Trees Correspondence) The transductions nw bt :
W0(Σ) 7→ B(Σ) and bt nw : B(Σ) 7→W0(Σ) are STT-definable.

Proof. We give an idea of how to construct such STTs. The transition nw bt can be performed
by an STT that basically simulates its inductive definition. We only need one variable x. Every
time an a is read we just update x := x[〈a?0a]〉. On input 〈a we store a and x on the stack.
At the corresponding return b〉, x will contain the value of nw bt(w1) and so we can update x :=
xp[〈ax[0]〈b?0b〉a〉] and keep reading w2 and its value will be inserted in x. The initial value of x is
?. The translation bt nw can be implemented as a BRTT in a trivial way. �

For a nested-word transduction f from W0(Σ) to W0(Γ), we can define another transduction
f̃ that maps binary trees over Σ to binary trees over Γ: given a binary tree t ∈ B(Σ), if t equals
nw bt(w), then f̃(t) = nw bt(f(w)), and otherwise f̃(t) is undefined. The following proposition can
be proved easily from the definitions of the encodings:

Proposition 13 (Encoding Nested-Word Transductions) If f is an MSO-definable trans-
duction from W0(Σ) to W0(Γ), then the transduction f̃ : B(Σ) 7→ B(Γ) is an MSO-definable
binary-tree transduction and f = bt nw · f̃ · nw bt.

Since STT-definable transductions are closed under composition, to establish that every MSO-
definable transduction is STT-definable, it suffices to consider MSO-definable transductions from
binary trees to binary trees.

4.2 Macro Tree Transducers

A Macro Tree Transducer (MTT) [4, 3] is a tree transducer in which the translation of a tree may
not only depend on its subtrees but also on its context. While the subtrees are represented by input
variables, the context information is handled by parameters. We refer the reader to [4, 3] for a
detailed definition of MTTs, and present here the essential details. We only consider deterministic
MTTs with regular look ahead that map binary trees to binary trees.

A (deterministic) macro-tree transducer with regular look ahead (MTTR) M from B(Σ) to
B(Γ) consists of a finite set Q of ranked states, a list Y = y1, . . . yn of parameter symbols, variables
X = {xl, xr} used to refer to input subtrees, an initial state q0, a finite set R of look-ahead types,
an initial look-ahead type r0, a look-ahead combinator θ : Σ × R × R 7→ R, and the transduction
function ∆. For every state q and every look-ahead type r, ∆(q, r) is a ranked tree over the alphabet
(Q ×X) ∪ Γ ∪ Y , where the rank of a label (q, x) is same as the rank of q, the rank of an output
symbol a ∈ Γ is 2, and the rank of each parameter symbol is 0 (that is, only leaves can be labeled
with parameters).

The look-ahead combinator is used to define look-ahead types for trees: θ∗(0) = r0 and
θ∗(a〈 sl sr 〉) = θ(a, θ∗(sl), θ

∗(sr)). Assume that only the tree 0 has the type r0, and for every
state q, ∆(q, r0) is a tree over Γ∪Y (the variables X are used to refer to immediate subtrees of the
current input tree being processed, and the type r0 indicates that the input tree has no subtrees).

The MTTR M rewrites the input binary tree s0, and at every step the output tree is a ranked
tree whose nodes are labeled either with an output symbol, or with a pair consisting of a state
of the MTTR along with a subtree of the input tree. Let T (s0) denote the set of all subtrees of
the input tree s0. Then, the output t at any step is a ranked tree over (Q × T (s0)) ∪ Γ ∪ {0}.
The semantics of the MTTR is defined by the derivation relation, denoted by ⇒, over such trees.

30

Initially, the output tree is a single node labeled with [q0, s0]. Consider a subtree of the output
of the form u = [q, s](t1, . . . tn), that is, the root is labeled with the state q of rank n, with input
subtree s, and children of this node are the output subtrees t1, . . . tn. Suppose the look-ahead type
of the input subtree s is r, and let sl and sr be the children of the root. Let χ be the tree obtained
from the tree ∆(q, r) by replacing input variables xl and xr appearing in a node label with the
input subtrees sl and sr respectively, and replacing each leaf labeled with a parameter yl by the
output subtree tl. Then, in one step, the MTTR can replace the subtree u with the tree χ. The
rewriting stops when all the nodes in the output tree are labeled only with output symbols. That
is, for s ∈ B(Σ) and t ∈ B(Γ), JMK(s) = t iff [q0, s]⇒∗ t.

In general, MTTs are more expressive than MSO. The restrictions needed to limit the expres-
siveness rely on the so-called single-use and finite copying. They enforce an MTT to process every
subtree in the input a bounded number of times. Let M be an MTTR.

1. The MTTR M is single use restricted in the parameters (SURP) if for every state q and every
look-ahead type r, each parameter yj occurs as a node-label at most once in the tree ∆(q, r).

2. The MTTR M is finite-copying in the input (FCI) if there exists a constant K such that for
every tree s over Σ and subtree s′ of s, if the (intermediate) tree t is derivable from [q0, s],
then t contains at most K occurrences of the label [q, s′] (and thus, each input subtree is
processed at most K times during a derivation).

The following theorem is proved in [3].

Theorem 14 (Regularity for MTTs) A ranked-tree transduction f is MSO-definable iff there
exists an MTTR M with SURP/FCI such that f = JMK.

4.3 MSO Equivalence

We first show that bottom-up ranked-tree transducers are as expressive as MTTs with regular-
look-ahead and single-use restriction:

Theorem 15 (From MTTRs to BRTTs) If a ranked-tree transduction f : B(Σ) 7→ B(Γ) is
definable by an MTTR with SURP/FCI, then it is BRTT-definable.

Proof. First of all we notice that in the same way as before we can extend BRTTs to multi-
parameter BRTTs. We will consider these ones for sake of clarity. We are given a MTTR with
SURP/FCI M = (QM , YM , q0M , RM , r0M , θM ,∆M).

We divide the proof into several steps and in each of them we use a property of the MTT.

1. We compute the transduction f ′ : B(Σ) 7→ B(R) where we replace the input alphabet with
its RLA labeling. This transformation can be expressed as a BRTT.

2. We compute the function f ′′ : B(R) 7→ B(R′) where we label each node of the tree with the
set of states in which the MTT processes the corresponding input subtree.

3. Now that we have the firing sequence we construct a BRTT that computes the function
f ′′′ : B(R′) 7→ B(Γ). This part relies on the SURP restriction

4. We then use closure under composition to show that f = f ′ · f ′′ · f ′′′ is a BRTT definable
transformation.

31

Step 1 is trivial since it just follows the rules of the bottom up automaton. In this step the
alphabet R is RM×Σ. For step 2 we use STTs. STTs can also be viewed as a top down machine and
f ′′ is nothing more than a top down relabeling. We now show the construction S2 that implements
f2. We can assume in the following that the MTT is from B(R) to B(Γ). We know that at
every point a subtree can be processed by at most K times (the parameter of the FCI) states.
We can label the nodes of the tree with the ordered sequence of states that will process it. So
given a tree over B(R) we want to construct a tree over B(R′) where R′ = R × S(QM ,K) and
S(QM ,K) =

⋃
1≤k≤K Q

k
M .

The states of S2 will be over S(QM ,K) ∪ (S(QM ,K) × S(QM ,K)). The initial state of S2 is
q0M (that means the root will be processed only by q0M). The invariant we want to maintain is
that whenever we are going to process a left subtree our state will be of the form (m1,m2) where
m1 is the sequence of states that will process the left subtree and m2 the one that will process the
future right subtree. When we will start processing the right subtree the state will be m2. So, when
processing a left child we store on its stack the state m2 and we will use it at the corresponding
return to start processing the right child. At every point the states mi can be obtained directly
from the right hand sides of the rules of the MTT on the sets of states in m (where m is the current
state of S2). It’s now trivial to do the corresponding labeling using the information stored in the
state.

We proceed to step 3. In this step we rely on the SURP property of the MTT. Notice that
processing bottom-up the MTT parameter update, behaves in a different way: if the top down
update y1 := a(y2) (where y1, y2 are both representing parameters of some subtree x) adds an a on
the top of y2. The corresponding bottom up update is x := x[y1 7→ a(y2)], where the new visible
parameter is y2. We now formalize this idea.

We want to construct a BRTT S3 = (QS , q0S ,Π, XS , FS , δS , ρS) from B(R′) 7→ B(Γ).
The state set QS and the transition function δS are defined to capture the same language on

which M is defined. All the control on variables can be inferred from the input alphabet. In the
case of total functions one state will be enough.

Thanks to the FCI restriction we know that each subtree will be processed at most in K possible
ways (for some K). XS contains K variables, {x1, . . . , xK}, that after processing a subtree will
contain the values of its K possible computations in M. At the beginning all the variable values are
set to ε. Our parameter set will be Π = YM . Since the MTT is SURP, at every point, any variable
can contain at most one occurrence of each yi ∈ YM .

Now we define the update functions ok S3. Let’s start from the leaf rules. Let’s assume the
current leaf is labeled with a sequence m = q1 . . . qj and RLA state r. For every qi ∈ m such that
∆(qi, r) = ti(y1, . . . , yk) (we can assume without loss of generality that all the states have exactly
k parameters) we update xi := ti(y1, . . . , yk) where y1, . . . , yk are parameters. Since the MTT is
SURP our variable will have at most one occurrence of each yi.

We now analyze the general rules. Let’s assume the node we are processing is labeled with
a sequence m = q1 . . . qj and RLA state r. For every qi ∈ m ∆(qi, r) will be of the form
ti(Y, (q

i
1,1, x1), . . . , (qi1,ai , x1), (qi2,1, x2), . . . , (qi2,bi , x2)), where qi1,1 . . . q

i
1,ai

is the sequence of node pro-

cessing the left subtree while , qi2,1 . . . q
i
2,bi

is the sequence of node processing the right subtree. By
the construction of S2, the left child (and similarly the right) must have been labeled with the
sequence ml = q1

1,1 . . . q
1
1,a1

. . . qj1,1 . . . q
j
1,aj

such that |ml| ≤ K. Moreover we will have that for all

xi ∈ Xl (similiarly for Xr), xi will contain the output of M when processing the left child of the
current node starting in state qs where qs is the s-th element of the sequence ml (assuming the pa-

32

rameter are not instantiated yet). Now we have all the ingredients to complete the rule. The right
hand side of a variable xi will contain the update corresponding to the rule in M where we replace
every state with the corresponding variable in the linearization stated above and parameters are
updated via substitution. We need to define the conflict relation η. Not surprisingly the transition
relation defined above is copyless, so the reflexive relation will be enough. The output function FS
will simply output x1, the transformation of the input tree starting in q0M .

In step 4 we use closure under composition to create the final STT. This completes the proof.
�

Now, we can put together all the results to obtain the main result:

Theorem 16 (MSO Equivalence) A nested-word transduction f : W0(Σ) 7→ W0(Γ) is STT-
definable iff it is MSO-definable.

5 Decision Problems

In this section, we show that a number of analysis problems for our model are decidable.

5.1 Output Analysis

Given an input nested word w over Σ, and an STT S from Σ to Γ, consider the problem of
computing the output JSK(w). To implement the operations of the STT efficiently, we can store the
nested words corresponding to variables in linked lists with reference variables pointing to positions
that correspond to holes. To process each symbol in w, the copyless update of variables can be
executed by changing only a constant number of pointers.

Proposition 17 (Computing Output) Given an input nested word w and an STT S, the output
word JSK(w) can be computed in time O(|w|).

The second problem we consider corresponds to type checking: given regular languages Lpre
and Lpost of nested words over Σ, and an STT S from Σ to Γ, the type checking problem is to
determine if JSK(Lpre) ⊆ Lpost (that is, if for every w ∈ Lpre, JSK(w) ∈ Lpost).

Theorem 18 (Type-Checking) Given an STT S from Σ to Γ, an NWA A accepting nested
words over Σ, and an NWA B accepting nested words over Γ, checking JSK(L(A)) ⊆ L(B) is
solvable in time O(|A|3 · |S|3 · nkn2

) where n is the number of states of B, and k is the number of
variables in S.

Proof. The construction is similar to the one of closure under composition. From S, A, and B,
we construct an NWA P that accepts a nested word w exactly when w is accepted by A but JSK(w)
is not accepted by B. The states of P are triplets (qA, qS , f) where qA keeps track of the state
of A, qS the state of S, and f is a function that, for every variable x of S and states q1, q2 in B,
f(x, q1, q2) = (q′1, q

′
2) maps x, q1, q2 to a pair of states of B (q′1, q

′
2) such that there is an execution

in B from q1 to q′1 on the word contained in x on the left of ? and there is an execution on B from
q2 to q′2 on the output word contained in x on the right of ? assuming we use the stack produced
from the left part. The final states of the machine are those where A is final and the summary of
the output leads to a non accepting state in B. �

33

As noted in Proposition 2, the image of an STT is not necessarily regular. However, the pre-
image of a given regular language is regular, and can be computed. Given an STT S from input
alphabet Σ to output alphabet Γ, and a language L ⊆W0(Γ) of output words, the set PreImg(L, S)
consists of input nested words w such that JSK(w) ∈ L.

Theorem 19 (Computing Pre-Image) Given an STT S from Σ to Γ, and an NWA B over Γ,
there is an algorithm to compute an NWA A over Σ such that L(A) = PreImg(L(B), S).

Proof. The proof follows from closure under composition. Let’s consider B as an STT. Now we
can compute S′ as the composition of S and B. It doesn’t take too long to convince ourselves that
S′ considered as an acceptor is exactly A. �

It follows that given an STT S and a regular language L of output nested words, there is an
ExpTime algorithm to test whether Img(S) ∩ L is non-empty.

5.2 Functional Equivalence

Finally, we consider the problem of checking functional equivalence of two STTs: given two stream-
ing tree transducers S and S′, we want to check if they define the same transduction. Given two
streaming string transducers S and S′, [13, 14] shows how to construct an NFA A over the alphabet
{0, 1} such that the two transducers are inequivalent exactly when A accepts some word w such
that w has equal number of 0’s and 1’s. The idea can be adopted for the case of STTs, but A
now will be a nondeterministic pushdown automaton. The size of A is polynomial in the number
of states of the input STTs, but exponential in the number of variables of the STTs. Results in
[17, 16] can be adopted to check whether this pushdown automaton accepts a word with the same
number of 0’s and 1’s.

Theorem 20 (Checking Equivalence) Given two STTs S and S′, the problem of checking whether
JSK 6= JS′K is solvable in NExpTime.

Proof. Two streaming tree transducers S and S′ are inequivalent if either:

1. for some input u only one of JSK(u) and JS′K(u) is defined or

2. for some input u the lengths of JSK(u) and JS′K(u) differ or

3. for some input u there exist two symbols a, b such that a 6= b and JSK(u) = u1au2 and
JS′K(u) = v1bv2 such that u1 and v1 have the same length.

The first two cases can be checked with lower complexity. The first one as shown in [12] is in
PTime, and the second one can be reduced to checking an affine relation over PDA that in [19] is
proven to be PTime.

Let us focus on (the more interesting) case 3) in which the outputs differ in some position.
Given S and a symbol a we construct a nondeterministic visibly pushdown transducer (a visibly
pushdown automata with output) V1 from Σ to {0} such that 0n is produced by V1 if for some u,
JSK(u) = u1au2 and |u1| = n.

The states of V1 are pairs (q, f) where q is a state of S and f is a partition of the variables X of
S into 6 categories: l) the variable contributes to the final output occurring on the left of a symbol
a where a is the symbol we have guessed the two transducers differ in the final output, m1) the

34

variable contributes to the final output and the symbol a appears in this variable on the left of the
?, m?) the variable contributes to the final output and the symbol a will appear in this variable
in the ? (a future substitution will add a to the ?, m2) the variable contributes to the final output
and the symbol a appears in this variable on the right of the ?, r) the variable contributes to the
final output occurring on the right of a symbol a, n) the variable does not contribute to the final
output.

At every step, V1 nondeterministically chooses which of the previous categories each of the
variables of S1 belongs to. In the following we denote as fi the partitions defined before (i.e. given
f , fm1 is the set of variables mapped to mq). A state (q, f) is initial in V1 if q is an initial state in
S, and fm1 ∪ fm2 = ∅. A careful reader will notice that an STT doesn’t have final states but we
can get rid of this problem creating a final state qf and adding a *-transition from all the states
in which the output function is defined using a symbol ∗ to label the transition where ∗ 6∈ Σ. We
still have the problem of which variable will contain the output and we can solve it updating x (the
first variable) to the value of the output function. Let’s refine the definition then: a state (q, f)
is final in V1 if q = qf , fm1 = {x} (notice that at this point the variable can’t contain parameters
and it has to be of type-0, so we do not need to consider fm2) and fn = X \ {x} (the only variable
contributing to the output is x). Clearly fl ∪ fr ∪ fm? ∪ fm2 = ∅.

Transitions of V1 ensure that these attributes are consistently updated. We now explain how
they work formally. Given (q, f) on input s we have the following possibilities (we denote by fj with
j ∈ {l,m1,m?,m2, r, n} the corresponding partition, and given a string α we say that a variable
x ∈ α if it occurs in it):

s is internal: (q, f) steps to (q′, f ′) where δi(q, s) = q′. To update f we have 3 possible cases:
i) we guess that in this transition, some variable x is going to contain the guessed position containing
the symbol on which the output differ,
ii) the transition is just maintaining the consistency of the partition and the position on which the
output differs hasn’t been guessed yet,
iii) the transition is just maintaining the consistency of the partition and the position on which the
output differs has already been guessed.

Case i): let’s assume the guess is that ρi(q, s, x) = α1aα2?α3 and a is the position on which
we guess the output differs. To perform a consistent update we need the transition to satisfy the
following properties: ∀y ∈ α1.y ∈ fl, ∀y ∈ α2α3.y ∈ fr, f ′m1 = {x} and fm = ∅ (the only variable
that contributes in the middle now is x), given a variable y 6= x all the variables in ρi(q, s, y) belong
to the same partition fj and y ∈ f ′j . If a variable is assigned a constant we nondeterministically
choose which category it will belong to in f ′ (we omit this detail in next points). In this case the
output is 0k where k is the sum of the number of input symbols in α and in {ρi(q, s, y)|y ∈ f ′l}.
Some extra hack is needed for assignments where we do parameter substitution: ρi(q, s, x) = x[a].
In this we better have guessed that fm? = {x} and f ′m1 = {x}.

Case ii and iii): Similar to before.

s is a call: in this case the updates are similar with the difference that we have to store on the
stack a state that records the partition of the variables at the call. Reading s, (q, f) steps to (q′, f ′),
pushes (p, f ′′) where δc(q, s) = q′, p. f ′′ will be the updated partition talking about the variables
in Xp. f

′ is a new partition for the reset variables.

s is a return: returns ar a bit more interesting than calls since we have to deal with the previous
value of the variables stored on the stack, but still the definition is the same of that for internal

35

action.
Reading s, (q, f) with (p, f ′) on top of the stack, steps to (q′′, f ′′) where δr(q, p, s) = q′. We show

how the first case differs: let’s assume the guess is that for a variable x ∈ X, ρr(q, s, x) = αaα′?α′′

and a is the position on which the output differs. To perform a consistent update we need the
transition to satisfy the following properties: ∀y ∈ α.y ∈ fl ∪ f ′l , ∀y ∈ α′α′′.y ∈ fr ∪ f ′r, f ′′m1 = {x},
fm1∪fm?∪fm2 = ∅ and f ′m1∪f ′m?∪f ′m2 = ∅, given a variable y 6= x all the variables in ρr(q, p, s, y)
are in fj ∪ f ′j and y ∈ f ′′j (for some j ∈ {l, r, n}). In this case the output is 0k where k is the sum
of the number of input symbols in α and in {ρr(q, p, s, y)|y ∈ f ′′l }.

We actually impose the extra condition on transitions that the cardinality of fm1 ∪ fm2 is
always less or equal than 1 since at most one variable can contain the symbol on which the output
differs. Moreover another condition is that if a variable doesn’t appear in the right hand side of
any assignment it should be in fn.

Then given S′ and a symbol b 6= a we construct a nondeterministic VPT V2 from Σ to {1} such
that 1n is produced by V2 if for some u, S(u) = u1bu2 and |u1| = n.

Now we take the product V = V1 × V2. Once we take the product, input labels are no longer
relevant, and we can view it as a pushdown automaton that generates/accepts strings over {0, 1}.

We want to check if V accepts some string that contains the same number of 0’s and 1’s
(which would ensure that the number of symbols contributed by S1 to the left of a equals the
corresponding number for S2 to the left of b). This can be solved by constructing the semi-linear
set that characterizes the Parikh image of the context-free language of V [17, 16], and can be solved
in NP (in the number of states of V).

The number of states of V is polynomial in the number of states of the transducers S and S′,
but exponential in the number of variables of the transducers (due to the classification of each
variable into 6 different categories). This gives the bound NExpTime for the inequivalence check.
�

If the number of variables is bounded, then the size of V is polynomial, and this gives an
upper bound of NP. For the transducers that map strings to nested words, that is, for streaming
string-to-tree transducers (SSTT), the above construction yields a Pspace bound:

Theorem 21 (Equivalence of String-to-tree Transducers) Given two SSTTs S and S′ that
map strings to nested words, the problem of checking whether JSK = JS′K is solvable in Pspace.

6 Discussion

We have proposed the model of streaming tree transducers to implement MSO-definable tree trans-
formations by processing the linear encoding of the input tree in a single left-to-right pass in linear
time. Below we discuss the relationship of our model to the rich variety of existing transducer
models, and directions for future work.

Executable models: A streaming tree transducer is an executable model, just like a determinis-
tic automaton or a sequential transducer, meaning that the operational semantics of the machine
processing the input coincides with the algorithm to compute the output from the input and the
machine description. Earlier executable models for tree transducers include bottom-up tree trans-
ducers, visibly pushdown transducers (a VPT is a sequential transducer with a visibly pushdown
store: it reads the input nested word left to right producing output symbols at each step) [20],

36

and multi bottom-up tree transducers (such a transducer computes a bounded number of trans-
formations at each node by combining the transformations of subtrees) [21]. Each of these models
computes the output in a single left-to-right pass in linear time. However, none of these models
can compute all MSO-definable transductions, and in particular, can compute the transformations
such as swap and tag-based sorting.

Regular look ahead: Finite copying Macro Tree Transducers (MTTs) with regular look ahead
can compute all MSO-definable ranked-tree-to-ranked-tree transductions. The “finite copying” re-
striction, namely, each input node is processed only a bounded number of times, can be equivalently
replaced by the syntactic “single use restriction” which restricts how the variables and parameters
are used in the right-hand sides of rewriting rules in MTTs. In all these models, regular look
ahead cannot be eliminated without sacrificing expressiveness: all of these process the input tree
in a top-down manner, and it is well-known that deterministic top-down tree automata cannot
specify all tree regular languages. A more liberal model with “weak finite copying” restriction
achieves closure under regular look ahead, and MSO-equivalence, by allowing each input node to
be processed an unbounded number of times, provided only a bounded subset of these contribute
to the final output. It should be noted, however, that a linear time algorithm exists to compute
the output [22]. This algorithm essentially uses additional look ahead passes to label the input
with the information needed to restrict attention to only those copies that will contribute to the
final output (in fact, [22] shows how relabeling of the input can be effectively used to compute the
output of every MTT in time linear in the size of the input and the output). Finally, to compute
tree-to-string transductions, in presence of regular look ahead, MTTs need just one parameter (al-
ternatively, top-down tree transducers suffice). In absence of regular look ahead, even if the final
output is a string, the MTT needs multiple parameters, and thus, intermediate results must be
trees (that is, one parameter MTTs are not closed under regular look ahead). Thus, closure under
regular look ahead is a key distinguishing feature of STTs.

From SSTs to STTs: The STT model generalizes our earlier work on streaming string transducers
(SST): SST is a copyless STT without a stack [13, 14]. While results in Section 5 follow by a natural
generalization of the corresponding results for SSTs, the results in Section 3 and 4 require new
approach. In particular, equivalence of SSTs with MSO-definable string-to-string transductions is
proved by simulating a two-way deterministic sequential transducer, a well-studied model known
to be MSO-equivalent [18], by an SST. The MSO-equivalence proof in this paper first establishes
closure under regular look ahead, and then simulates finite copying MTTs with regular look ahead.
The natural analog of two-way deterministic string transducers would be the two-way version of
visibly pushdown transducers [20]: while such a model has not been studied, it is easy to show
that it would violate the “linear-bounded output” property of Proposition 1, and thus, won’t be
MSO-equivalent.

Succinctness: To highlight the differences in how MTTs and STTs compute, we consider two
“informal” examples. Let f1 and f2 be two MSO-definable transductions, and consider the trans-
formation f(w) = f1(w)f2(w). An MTT at every node can send multiple copies to children, and
thus, has inherent parallelism. Thus, it can compute f by having one copy compute f1, and one
copy compute f2, and the size of the resulting MTT will be the sum of the sizes of MTTs comput-
ing f1 and f2. STTs are sequential, and thus, to compute f , one needs the product of the STTs
computing f1 and f2. This can be generalized to show that MTTs (or top-down tree transducers)
can be exponentially more succinct than STTs. If we were to restrict MTT rules so that multiple

37

states processing the same subtree must coincide, then this gap disappears. In the other direction,
consider the transformation f ′ that maps input u#v#a to uv if a = 0 and vu otherwise. The
transduction f ′ can be easily implemented by an STT using two variables, one of which stores u
and one which stores v. The ability of an STT to concatenate variables in any order allows it to
output either uv or vu depending on the last symbol. In absence of look ahead, an MTT for f ′

must use two parameters, and compute (the tree encodings of) uv and vu separately in parallel,
and make a choice at the end. This is because, while an MTT rule can swap or discard output
subtrees corresponding to parameters, it cannot combine subtrees corresponding to parameters.
This example can be generalized to show that an MTT must use exponentially many parameters
as well as states compared to an STT.

Input/output encoding: Most models of tree transducers process ranked trees (exceptions in-
clude visibly pushdown transducers [20] and Macro forest transducers [23]). While an unranked
tree can be encoded as a ranked tree (for example, a word of length n can be viewed as a unary tree
of depth n), this is not a good encoding choice for processing the input, since the stack height is
related to depth (in particular, processing a word does not need a stack at all). We have chosen to
encode unranked trees by nested words; formalization restricted to tree words (that are isomorphic
to unranked trees) would lead to a slight simplification of the STT model and the proofs.

Streaming algorithms: Consistent with the notion of a streaming algorithm, an STT processes
each input symbol in constant time. However, it stores the output in multiple chunks in different
variables, rearranging them without examining them, making decisions based on finite-state control.
Unlike a typical streaming algorithm, or a sequential transducer, the output of an STT is available
only after reading the entire input. This is unavoidable if we want compute a function that maps an
input to its reverse. We would like to explore if the STT model can be modified so that it commits
to output symbols as early as possible. A related direction of future work concerns minimization
of resources (states and variables).

Complexity of checking equivalence: The problem of checking functional equivalence of MSO
tree transducers is decidable with nonelementary complexity [15]. Decidability follows for MSO-
equivalent models such as MTTs with finite copying, but no complexity bounds have been estab-
lished. Polynomial-time algorithms for equivalence checking exist for top-down tree transducers
(without regular look ahead) and visibly pushdown transducers [1, 20, ?]. For STTs, we have
established an upper bound of NExpTime, while the upper bound for SSTs is Pspace [14]. Im-
proving these bounds, or establishing lower bounds, remains a challenging open problem. If we
extend the SST/STT model by removing the single-use-restriction on variable updates, we get a
model more expressive than MSO-definable transductions; it remains open whether the equivalence
problem for such a model is decidable.

Application to XML processing: We have argued that SSTs correspond to a natural model
with executable interpretation, adequate expressiveness, and decidable analysis problems, and in
future work, we plan to explore its application to querying and transforming XML documents [8]
(see also http://www.w3.org/TR/xslt20/). Our analysis techniques typically have complexity
that is exponential in the number of variables, but we do not expect the number of variables to be
the bottleneck. Before we start implementing a tool for XML processing, we want to understand
how to integrate data values (that is, tags ranging over a potentially unbounded domain) in our
model. A particularly suitable implementation platform for this purpose seems to be the frame-

38

work of symbolic automata and symbolic transducers that allows integration of automata-theoretic
decision procedures on top of the SMT solver Z3 that allows manipulation of formulas specifying
input/output values from a large or unbounded alphabet in a symbolic and succinct manner [24].

Acknowledgments: We thank Joost Engelfriet for his valuable feedback: not only he helped
us navigate the extensive literature on tree transducers, but also provided detailed comments,
including spotting bugs in proofs, on an earlier draft of this paper.

References

[1] Comon, H., Dauchet, M., Gilleron, R., Lugiez, D., Tison, S., Tommasi, M.: Tree automata
techniques and applications. Draft, Available at http://www.grappa.univ-lille3.fr/tata/
(2002)

[2] Courcelle, B.: Monadic second-order definable graph transductions: A survey. Theor. Comput.
Sci. 126(1) (1994) 53–75

[3] Engelfriet, J., Maneth, S.: Macro tree transducers, attribute grammars, and MSO definable
tree translations. Information and Computation 154 (1999) 34–91

[4] Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. System Sci. 31 (1985) 71–146

[5] Milo, T., Suciu, D., Vianu, V.: Typechecking for xml transformers. In: Proceedings of the
19th ACM Symposium on PODS. (2000) 11–22

[6] Hosoya, H., Pierce, B.C.: XDuce: A statically typed XML processing language. ACM Trans.
Internet Techn. 3(2) (2003) 117–148

[7] Martens, W., Neven, F.: On the complexity of typechecking top-down XML transformations.
Theor. Comput. Sci. 336(1) (2005) 153–180

[8] Hosoya, H.: Foundations of XML Processing: The Tree-Automata Approach. Cambridge
University Press (2011)

[9] Segoufin, L., Vianu, V.: Validating streaming XML documents. In: Proceedings of the 21st
ACM Symposium on PODS. (2002) 53–64

[10] Neven, F., Schwentick, T.: Query automata over finite trees. Theor. Comput. Sci. 275(1-2)
(2002) 633–674

[11] Madhusudan, P., Viswanathan, M.: Query automata for nested words. In: Mathematical
Foundations of Computer Science 2009, 34th International Symposium. LNCS 5734 (2009)
561–573

[12] Alur, R., Madhusudan, P.: Adding nesting structure to words. Journal of the ACM 56(3)
(2009)

[13] Alur, R., Cerný, P.: Expressiveness of streaming string transducers. In: IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science. LIPIcs
8 (2010) 1–12

39

[14] Alur, R., Cerný, P.: Streaming transducers for algorithmic verification of single-pass list-
processing programs. In: Proceedings of 38th ACM Symposium on POPL. (2011) 599–610

[15] Engelfriet, J., Maneth, S.: The equivalence problem for deterministic MSO tree transducers
is decidable. Inf. Process. Lett. 100(5) (2006) 206–212

[16] Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free. In:
Automata, Languages and Programming: 31st International Colloquium. LNCS 3142 (2004)
1136–1149

[17] Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes.
Fundam. Inform. 31(1) (1997) 13–25

[18] Engelfriet, J., Hoogeboom, H.: MSO definable string transductions and two-way finite-state
transducers. ACM Trans. Comput. Log. 2(2) (2001) 216–254

[19] Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra. SIGPLAN
Not. 39 (2004) 330–341

[20] Raskin, J., Servais, F.: Visibly pushdown transducers. In: Automata, Languages and Pro-
gramming: Proceedings of the 35th ICALP. LNCS 5126 (2009) 386–397

[21] Engelfriet, J., Lilin, E., Maletti, A.: Extended multi bottom-up tree transducers. In: Devel-
opments in Language Theory. LNCS 5257 (2008) 289–300

[22] Maneth, S.: The complexity of compositions of deterministic tree transducers. In: FST
TCS 2002: Foundations of Software Technology and Theoretical Computer Science, 22nd
Conference. LNCS 2556 (2002) 265–276

[23] Perst, T., Seidl, H.: Macro forest transducers. Inf. Process. Lett. 89(3) (2004) 141–149

[24] Bjorner, N., Hooimeijer, P., Livshits, B., Molner, P., Veanes, M.: Symbolic finite state trans-
ducers, algorithms, and applications. In: Proc. 39th ACM Symposium on POPL. (2012)

40

	University of Pennsylvania
	ScholarlyCommons
	7-2012

	Streaming Tree Transducers
	Rajeev Alur
	Loris D'Antoni
	Recommended Citation

	Streaming Tree Transducers
	Abstract
	Disciplines
	Comments

	tmp.1342618351.pdf.9r2ym

