26 research outputs found

    Linking scales and disciplines : an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management

    Get PDF
    CITATION: Berger, C. et al. 2019. Linking scales and disciplines : an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management. Climatic Change, 156:139–150, doi:10.1007/s10584-019-02544-0.The original publication is available at https://www.springer.com/journal/10584Southern Africa is particularly sensitive to climate change, due to both ecological and socioeconomic factors, with rural land users among the most vulnerable groups. The provision of information to support climate-relevant decision-making requires an understanding of the projected impacts of change and complex feedbacks within the local ecosystems, as well as local demands on ecosystem services. In this paper, we address the limitation of current approaches for developing management relevant socio-ecological information on the projected impacts of climate change and human activities.We emphasise the need for linking disciplines and approaches by expounding the methodology followed in our two consecutive projects. These projects combine disciplines and levels of measurements from the leaf level (ecophysiology) to the local landscape level (flux measurements) and from the local household level (socio-economic surveys) to the regional level (remote sensing), feeding into a variety of models at multiple scales. Interdisciplinary, multi-scaled, and integrated socio-ecological approaches, as proposed here, are needed to compliment reductionist and linear, scalespecific approaches. Decision support systems are used to integrate and communicate the data and models to the local decision-makers.https://link.springer.com/article/10.1007/s10584-019-02544-0Publisher's versio

    Modelling future global change impacts on African ecosystems and their carbon dynamics and associated uncertainties and challenges

    No full text
    Semi-arid African ecosystems influence trends and variability in global terrestrial carbon dynamics. However, there are uncertainties in potential effects of future climates for semi-arid ecosystems, especially for niche ecosystems. At the same time, African ecosystems provide the livelihoods and ecosystem services for around 1.4 billion people. Future population growth and associated changes in land use pose a challenge for the protection of African biodiversity. Therefore, this work focussed on future impacts of climate change on African ecosystems and carbon dynamics and also for African protected areas (PAs), where they may cooccur with other global change factors. Another focus was on uncertainties associated with future projections and with modelling the Nama Karoo, as an example of a semi-arid niche ecosystem. Dynamic vegetation models (DVMs) were the main research tool. In Chapter 2, we analysed climate change impacts on African ecosystems and carbon pools until the end of the 21st century and associated uncertainties based on an ensemble of vegetation simulations with the DVM adaptive dynamic vegetation model (aDGVM). We investigated the impact of increased atmospheric CO2 concentrations and two climate change scenarios (medium (RCP4.5) and high emissions (RCP8.5); RCP - representative concentration pathway) on vegetation changes. Differences in the simulated vegetation were primarily driven by assumptions about the influence of CO2 on plants. Elevated CO2 concentrations led to increased total aboveground vegetation biomass and shrub encroachment into grasslands and savannas for both climate scenarios. In simulations without the direct influence of CO2 on plants, there was hardly any shrub encroachment and vegetation biomass decreased or varied between a slight decrease in some cases and a slight increase in others. Based on these results, biome changes due to climate change are likely in Africa in the future. Due to the large uncertainties in future projections, strategies to adapt to climate change must be flexible. The simulated vegetation in Chapter 2 represented potential, natural vegetation and is particularly suitable to investigate PAs. However, PAs do not exist isolated from their environment and social developments. In Chapter 3, the vegetation projections with CO2 effect from Chapter 2 were combined with projections for population density and land use. Except for many PAs in North Africa, most PAs were adversely affected by at least one of the three drivers by the end of the 21st century in both investigated scenarios ("middle-of-the-road" and "fossil-fuelled development"). Cooccurrence of the drivers varied by region and scenario for PAs. Both scenarios implied increasing challenges for the conservation of African biodiversity in PAs. The impact of climate change on vegetation is likely to be exacerbated by socio-economic change for most African PAs. Strong mitigation of future climate change together with equitable societal development may facilitate successful ecosystem conservation. The simulations in Chapters 2 and 3 showed large-scale patterns of vegetation change, but their low resolution makes them unsuitable for local analyses. In Chapter 4, the challenges of simulating smaller scale, semi-arid ecosystems and their carbon cycle were analysed for the Nama Karoo with the aDGVM2 and its shrub module. The aDGVM2 is based on the aDGVM, but represents plants more flexibly. In all tested aDGVM2 configurations, the carbon fluxes improved compared to initial simulations but still overestimated them. The measured morphology of the dwarf shrubs and soil water dynamics were not reproduced in aDGVM2. Semi-arid soil water dynamics and coping strategies of semi-arid dwarf shrubs under drought stress are not adequately implemented in the aDGVM2. Further field research on semi-arid water and carbon dynamics of vegetation is necessary to parameterise the aDGVM2 for dwarf shrubs. If these challenges are overcome, DVMs can be a powerful tool for much-needed research on the impacts of climate change on the Nama Karoo. The analyses have shown that climate change under medium to high emission scenarios is likely to lead to large-scale changes in ecosystems and the carbon balance in Africa. Because lower emissions scenarios come with less uncertainty, climate change adaptation strategies likely need to be less complex or extensive if climate change is minimised. For African PAs, the challenges of climate change may be exacerbated by socio-economic factors to a regionally varying extent. This research suggests that successful ecosystem conservation depends on climate change mitigation measures and ensuring equitable, sustainable development. The shown uncertainties, e.g., in the implementation of the CO2 effect on plants or vegetation dynamics in more niche ecosystems, help to focus future research efforts and increase our understanding of the range of plausible futures we may need to adapt to

    Combined impacts of future climate-driven vegetation changes and socioeconomic pressures on protected areas in Africa

    No full text
    Africa's protected areas (PAs) are the last stronghold of the continent's unique biodiversity, but they appear increasingly threatened by climate change, substantial human population growth, and land-use change. Conservation planning is challenged by uncertainty about how strongly and where these drivers will interact over the next few decades. We investigated the combined future impacts of climate-driven vegetation changes inside African PAs and human population densities and land use in their surroundings for 2 scenarios until the end of the 21st century. We used the following 2 combinations of the shared socioeconomic pathways (SSPs) and representative greenhouse gas concentration pathways (RCPs): the “middle-of-the-road” scenario SSP2–RCP4.5 and the resource-intensive “fossil-fueled development” scenario SSP5–RCP8.5. Climate change impacts on tree cover and biome type (i.e., desert, grassland, savanna, and forest) were simulated with the adaptive dynamic global vegetation model (aDGVM). Under both scenarios, most PAs were adversely affected by at least 1 of the drivers, but the co-occurrence of drivers was largely region and scenario specific. The aDGVM projections suggest considerable climate-driven tree cover increases in PAs in today's grasslands and savannas. For PAs in West Africa, the analyses revealed climate-driven vegetation changes combined with hotspots of high future population and land-use pressure. Except for many PAs in North Africa, future decreases in population and land-use pressures were rare. At the continental scale, SSP5–RCP8.5 led to higher climate-driven changes in tree cover and higher land-use pressure, whereas SSP2–RCP4.5 was characterized by higher future population pressure. Both SSP–RCP scenarios implied increasing challenges for conserving Africa's biodiversity in PAs. Our findings underline the importance of developing and implementing region-specific conservation responses. Strong mitigation of future climate change and equitable development scenarios would reduce ecosystem impacts and sustain the effectiveness of conservation in Africa

    Self-motion perception without sensory motion

    No full text
    Various studies have demonstrated a role for cognition on self-motion perception. Those studies all concerned modulations of the perception of a physical or visual motion stimulus. In our study however, we investigated whether cognitive cues could elicit a percept of oscillatory self motion in the absence of sensory motion. If so, we could use this percept to investigate if the resulting mismatch between estimated self-motion and a lack of corresponding sensory signals is motion sickening. To that end, we seated blindfolded participants on a swing that remained motionless during two experimental sessions, apart from a deliberate perturbation at the start of each session. The two sessions only differed regarding instructions, a secondary task and a demonstration, which suggested either a quick halt (“Distraction”) or continuing oscillations of the swing (“Focus”). Participants reported that the swing oscillated with larger peak-to-peak displacements and for a longer period of time in the Focus session. That increase was not reflected in the reported motion sickness scores, which did not differ between the two sessions. As the reported motion was rather small, the lack of an effect on the motion sickness response can be explained by assuming a subthreshold neural conflict. Our results support the existence of internal models relevant to sensorimotor processing and the potential of cognitive (behavioral) therapies to alleviate undesirable perceptual issues to some extent. We conclude that oscillatory self motion can be perceived in the absence of related sensory stimulation, which advocates for the acknowledgement of cognitive cues in studies on self-motion perception

    Mitigating motion sickness by anticipatory cues

    No full text
    In this study, we aim to investigate the effectiveness of auditory and vibroctile cues in mitigating motion sickness

    The (in)effectiveness of anticipatory vibrotactile cues

    No full text
    Study on the effect of anticipatory vibrotactile cues in mitigating motion sicknes

    Grazing and aridity reduce perennial grass abundance in semi-arid rangelands - Insights from a trait-based dynamic vegetation model

    No full text
    Semi-arid tropical rangelands substantially contribute to livelihoods of subsistence farmers, but are threatened by undesired vegetation shifts due to climate change and overgrazing. Grazing-induced shifts of the grass community composition are often associated with rangeland degradation. To identify sustainable management strategies, a process-based understanding of grass functional diversity and rangeland dynamics is required. We present a new scheme for aDGVM2, a dynamic vegetation model for tropical ecosystems, that distinguishes annual and perennial grasses based on trait trade-offs to improve the representation of rangeland communities. Additionally, the model includes a new scheme that describes selective grazing and grazing effects on grass-layer composition. We tested the new model version for various grazing intensities along a precipitation gradient in South Africa. Mean annual precipitation below 500 mm constrained rangeland productivity and carrying capacity. Increasing grazing intensity reduced rangeland productivity and increased annual grass abundance. Heavy grazing resulted in annual grass dominance. Livestock preferred perennial over annual grasses at low grazing intensities at all except the two driest sites; preference switched to annual grasses at intermediate intensities, and became non-discriminating at high grazing intensities. Rangeland recovery after removal of grazers required 2-15 years. We conclude that management intervention reducing or eliminating grazing pressure during and after stress years is crucial to allow rangeland recovery and avoid permanent degradation
    corecore