2,532 research outputs found

    Semiclassical transport in nearly symmetric quantum dots II: symmetry-breaking due to asymmetric leads

    Get PDF
    In this work - the second of a pair of articles - we consider transport through spatially symmetric quantum dots with leads whose widths or positions do not obey the spatial symmetry. We use the semiclassical theory of transport to find the symmetry-induced contributions to weak localization corrections and universal conductance fluctuations for dots with left-right, up-down, inversion and four-fold symmetries. We show that all these contributions are suppressed by asymmetric leads, however they remain finite whenever leads intersect with their images under the symmetry operation. For an up-down symmetric dot, this means that the contributions can be finite even if one of the leads is completely asymmetric. We find that the suppression of the contributions to universal conductance fluctuations is the square of the suppression of contributions to weak localization. Finally, we develop a random-matrix theory model which enables us to numerically confirm these results.Comment: (18pages - 9figures) This is the second of a pair of articles (v3 typos corrected - including in equations

    The simulation of coherent structures in a laminar boundary layer

    Get PDF
    Coherent structures in turbulent shear flows were studied extensively by several techniques, including the VITA technique which selects rapidly accelerating or decelerating regions in the flow. The evolution of a localized disturbance in a laminar boundary layer shows strong similarity to the evolution of coherent structures in a turbulent-wall bounded flow. Starting from a liftup-sweep motion, a strong shear layer develops which shares many of the features seen in conditionally-sampled turbulent velocity fields. The structure of the shear layer, Reynolds stress distribution, and wall pressure footprint are qualitatively the same, indicating that the dynamics responsible for the structure's evolution are simple mechanisms dependent only on the presence of a high mean shear and a wall and independent of the effects of local random fluctuations and outer flow effects. As the disturbance progressed, the development of streak-like-high- and low-speed regions associated with the three-dimensionality

    The Hansenula polymorpha PER8 Gene Encodes a Novel Peroxisomal Integral Membrane Protein Involved in Proliferation

    Get PDF
    We previously described the isolation of mutants of the methylotrophic yeast Hansenula polymorpha that are defective in peroxisome biogenesis. Here, we describe the characterization of one of these mutants, per8, and the cloning of the PER8 gene. In either methanol or methylamine medium, conditions that normally induce the organdies, per8 cells contain no peroxisome-like structures and peroxisomal enzymes are located in the cytosol. The sequence of PER8 predicts that its product (Per8p) is a novel polypeptide of 34 kD, and antibodies against Per8p recognize a protein of 31 kD. Analysis of the primary sequence of Per8p revealed a 39-amino-acid cysteine-rich segment with similarity to the C3HC4 family of zinc-finger motifs. Overexpression of PER8 results in a markedly enhanced increase in peroxisome numbers. We show that Per8p is an integral membrane protein of the peroxisome and that it is concentrated in the membranes of newly formed organdies. We propose that Per8p is a component of the molecular machinery that controls the proliferation of this organelle.

    Peroxisome biogenesis in Hansenula polymorpha: different mutations in genes, essential for peroxisome biogenesis, cause different peroxisomal mutant phenotypes

    Get PDF
    In Hansenula polymorpha, different monogenic recessive mutations mapped in either of two previously identified genes, PER1 and PER3, produced different peroxisomal mutant phenotypes. Among five per1 mutants, four showed a Pim- phenotype: the cells contained few small peroxisomes while the bulk of the matrix enzymes resided in the cytosol. One of these mutants, per1-124 had an enhanced rate of peroxisome proliferation. The fifth mutant completely lacked peroxisomes (Per- phenotype). Of seven per3 mutants, four displayed a Pim- phenotype, two others a Per- phenotype, while one mutant showed pH-dependent growth on methanol and was affected in oligomerization of peroxisomal matrix protein. Thus, the protein products of both PER1 and PER3 genes appear to be essential in different aspects of peroxisome assembly/proliferation.

    Checkpoint urbanism: Violent infrastructures and border stigmas in the Juarez border region

    Get PDF
    As Popitz (2017) argues, violence is one component of the great economy of world history, an option permanently open to human activity. In Ciudad Juárez, right at the border between the United States and Mexico, this notion explains the fundamental incongruity that characterises the region: a booming industrial productive model operating in parallel with an international crime and violence hotspot that is also a coveted criminal passageway. This paper will argue that official and criminal checkpoints designed for border-crossing, have had a transformative spatial role when considered across the dimensions of infrastructure and stigma, triggering a material/symbolic tension. We argue that their location and accessibility determine the exposure of nearby communities to economic growth but also violent entrepreneurship – the illegal crossing of goods and people still remains a constant characteristic of the region, not only as part of a criminal enterprise but as a viable livelihood. The ways in which the region of Juárez develops and grows also determines how trafficking and illegal practices are established; rules and regulations that provide territorial parameters for what is open and transparent are equally referential to what is clandestine and devious. The tensions brought by the border’s geopolitical value have amplified the value of infrastructure and its practical ownership. The international border operates as a line that is barrier, social divider, landmark, policy-bridge, filtering mechanism and trafficking obstacle. Under this permanent state of tension, the checkpoints provide a physical structure to the transit flows and a sovereign interruption. Across this urbanism, the checkpoint surroundings acquire a magnetic significance, due to the resulting transit dynamics and the surveillance deterrents at the core of their function. Furthermore, their dual nature – official and criminal – has branded the region as a criminal outpost, stigmatising the people inhabiting it, and perpetuating the idea that Juárez is defined by its violent infrastructures

    East Mentaya priority area central Kalimantan : phase 2 : report (part. 3)

    Get PDF

    Patterns and developments in the marking of diminutives in Bantu

    Get PDF
    This paper presents an overview of diminutives in the Bantu language family, with an emphasis on the role of the noun class system in diminutive formation. It charts different processes of language change which have shaped the present-day situation, as well as highlighting instance in which language contact has played a role in the development of diminutive systems. It also addresses semantic and pragmatic processes underlying the change and variation in Bantu diminutives. The comparison is based on a cross-Bantu typology, examining a sample of 48 languages widespread across the linguistic domain

    Context-Aware Trust Domains

    Get PDF

    Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches

    Get PDF
    Water transported by slabs into the mantle at subduction zones plays key roles in tectonics, magmatism, fluid and volatiles fluxes, and most likely in the chemical evolution of the Earth's oceans and mantle. Yet, incorporation of water into oceanic plates before subduction is a poorly understood process. Several studies suggest that plates may acquire most water at subduction trenches because the ocean crust and uppermost mantle there are intensely faulted caused by bending and/or slab pull, and display anomalously low seismic velocities. The low velocities are interpreted to arise from a combination of fluid-filled fractures associated to normal faulting and mineral transformation by hydration. Mantle hydration by transformation of nominally dry peridotite to water-rich serpentinite could potentially create the largest fluid reservoir in slabs and is therefore the most relevant for the transport of water in the deep mantle. The depth of fracturing by normal-fault earthquakes is usually not well constrained, but could potentially create deep percolation paths for water that might hydrate up to tens of kilometers into the mantle, restrained only by serpentine stability. Yet, interpretation of deep intraplate mineral alteration remains speculative because active-source seismic experiments have sampled only the uppermost few kilometers of mantle, leaving the depth-extent of anomalous velocities and their relation to faulting unconstrained. Here we use a joint inversion of active-source seismic data, and both local and regional earthquakes to map the three dimensional distribution of anomalous velocities under a seismic network deployed at the trench seafloor. We found that anomalous velocities are restrained to the depth of normal-fault micro-earthquake activity recorded in the network, and are considerably shallower than either the rupture depth of teleseismic, normal-fault earthquakes, or the limit of serpentine stability. Extensional micro-earthquakes indicate that each fault in the region slips every 2–3 months which may facilitate regular water percolation. Deeper, teleseismic earthquakes are comparatively infrequent, and possibly do not cause significant fracturing that remains open long enough to promote alteration detectable with our seismic study. Our results show that the stability field of serpentine does not constrain the depth of potential mantle hydration
    • …
    corecore