38 research outputs found

    Data Transparent and Polarization Insensitive All-Optical Switch based on Fibers with Enhanced Nonlinearity

    Get PDF
    We have developed a data transparent optical packet switch prototype employing wavelength conversion based on four-wave mixing. The switch is composed of an electro-optical control unit and an all-optical switching segment. To achieve higher switching efficiencies, Ge-doped silica suspended-core and chalcogenide arsenicselenide single-mode fibers were experimentally evaluated and compared to conventional highly-nonlinear fiber. Improved connectorization technology has been developed for Ge-doped suspended-core fiber, where we achieved connection losses of 0.9 dB. For the arsenic-selenide fiber we present a novel solid joint technology, with connection losses of only 0.25 dB, which is the lowest value presented up-to-date. Conversion efficiency of -13.7 dB was obtained for the highly-nonlinear fiber, which is in perfect correlation with previously published results and thus verifies the functionality of the prototype. Conversion efficiency of -16.1 dB was obtained with arsenic-selenide fiber length reduced to five meters within simulations, based on measurement results with a 26 m long component. Employment of such a short arsenic-selenide fiber segment allows significant broadening of the wavelength conversion spectral range due to possible neglection of dispersion

    Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Seminal fluid plays an important role in successful fertilization, but knowledge of the full suite of proteins transferred from males to females during copulation is incomplete. The list of ejaculated proteins remains particularly scant in one of the best-studied mammalian systems, the house mouse (<it>Mus domesticus</it>), where artificial ejaculation techniques have proven inadequate. Here we investigate an alternative method for identifying ejaculated proteins, by isotopically labeling females with <sup>15</sup>N and then mating them to unlabeled, vasectomized males. Proteins were then isolated from mated females and identified using mass spectrometry. In addition to gaining insights into possible functions and fates of ejaculated proteins, our study serves as proof of concept that isotopic labeling is a powerful means to study reproductive proteins.</p> <p>Results</p> <p>We identified 69 male-derived proteins from the female reproductive tract following copulation. More than a third of all spectra detected mapped to just seven genes known to be structurally important in the formation of the copulatory plug, a hard coagulum that forms shortly after mating. Seminal fluid is significantly enriched for proteins that function in protection from oxidative stress and endopeptidase inhibition. Females, on the other hand, produce endopeptidases in response to mating. The 69 ejaculated proteins evolve significantly more rapidly than other proteins that we previously identified directly from dissection of the male reproductive tract.</p> <p>Conclusion</p> <p>Our study attempts to comprehensively identify the proteins transferred from males to females during mating, expanding the application of isotopic labeling to mammalian reproductive genomics. This technique opens the way to the targeted monitoring of the fate of ejaculated proteins as they incubate in the female reproductive tract.</p

    Funkční povrchy na bázi LIPSS vyrobené vícepaprskovým nanostrukturováním s 2601 paprsky a měřením tepelných procesů v reálném čase

    No full text
    Unikátní kombinace ultrakrátkého vysokoenergetického pulzního laserového systému s výjimečnou kvalitou paprsku a uninového difrakčního optického prvku (DOE) umožňuje současnou produkci 2601 laserových stop uspořádaných do čtvercové matice 1 × 1 mm za méně než 0,01 ms. Úpravou laseru a parametrů zpracování může každá stopa obsahovat laserem indukované periodické povrchové struktury (LIPSS, vlnky), včetně LIPSS s vysokou prostorovou frekvencí (HFSL) a LIPSS s nízkou prostorovou frekvencí (LSFL). DOE umístěné před galvanometrickým skenerem umožňuje snadnou integraci a spojování vzoru na větších plochách. Kromě toho byla tvorba LIPSS poprvé monitorována pomocí rychlé infračervené radiometrie pro ověření možností kontroly kvality v reálném čase. Během výroby LIPSS byly po každém laserovém pulzu pozorovány plata tuhnutí, což umožňuje řízení procesu sledováním akumulace tepla nebo délky plat pomocí nového přístupu derivace signálu. Analýza plat tuhnutí po každém laserovém pulzu umožnila dynamickou kalibraci měření. Z měření byly pozorovány teploty akumulace tepla od 200 do 1000 °C a porovnány s teoretickým modelem. Měření teploty odhalilo zajímavé změny ve fyzice procesu laserové ablace. Navíc nejvyšší produktivita na ploše 40 × 40 mm dosáhla 1910 cm2/min, což je podle našich nejlepších znalostí nejvyšší prokázaná produktivita nanostrukturování LIPSS. Ukazuje tak velký potenciál pro účinnou výrobu funkčních povrchů na bázi LIPSS, které lze použít ke zlepšení mechanických, biologických nebo optických vlastností povrchu.A unique combination of the ultrashort high-energy pulsed laser system with exceptional beam quality and a novel Diffractive Optical Element (DOE) enables simultaneous production of 2601 spots organized in the square-shaped 1 × 1 mm matrix in less than 0.01 ms. By adjusting the laser and processing parameters each spot can contain Laser Induced Periodic Surface Structures (LIPSS, ripples), including high-spatial frequency LIPSS (HFSL) and low-spatial frequency LIPSS (LSFL). DOE placed before galvanometric scanner allows easy integration and stitching of the pattern over larger areas. In addition, the LIPSS formation was monitored for the first time using fast infrared radiometry for verification of real-time quality control possibilities. During the LIPSS fabrication, solidification plateaus were observed after each laser pulse, which enables process control by monitoring heat accumulation or plateau length using a new signal derivation approach. Analysis of solidification plateaus after each laser pulse enabled dynamic calibration of the measurement. Heat accumulation temperatures from 200 to 1000 °C were observed from measurement and compared to the theoretical model. The temperature measurements revealed interesting changes in the physics of the laser ablation process. Moreover, the highest throughput on the area of 40 × 40 mm reached 1910 cm2/min, which is the highest demonstrated throughput of LIPSS nanostructuring, to the best of our knowledge. Thus, showing great potential for the efficient production of LIPSS-based functional surfaces which can be used to improve surface mechanical, biological or optical properties
    corecore