33 research outputs found

    The Role of Adiponectin in the Resolution of Male-Obesity-Associated Secondary Hypogonadism after Metabolic Surgery and Its Impact on Cardiovascular Risk

    No full text
    Male-obesity-associated secondary hypogonadism (MOSH) is a very prevalent entity that may resolve after marked weight loss. Adiponectin (APN) is an adipokine with anti-inflammatory properties that regulates metabolism. Low-circulating APN is associated with obesity, diabetes, and cardiovascular risk, along with circulating testosterone. We aimed to evaluate APN changes in men with MOSH (low circulating free testosterone (FT) with low or normal gonadotropins) and without it after metabolic surgery. We look for their possible association with cardiovascular risk measured by carotid intima-media thickness (cIMT). We included 60 men (20 submitted to lifestyle modification, 20 to sleeve gastrectomy, and 20 to gastric bypass) evaluated at baseline and 6 months after. The increase in APN at follow-up was reduction in patients with persistent MOSH (n = 10) vs. those without MOSH (n = 30) and MOSH resolution (n = 20), and the former did not achieve a decrease in cIMT. The increase in APN correlated positively with FT (r = 0.320, p = 0.013) and inversely with cIMT (r = −0.283, p = 0.028). FT inversely correlated with cIMT (r = −0.269, p = 0.038). In conclusion, men without MOSH or with MOSH resolution showed a high increase in APN after weight loss with beneficial effects on cIMT. Those without MOSH resolution failed to attain these effects

    High Photostability in Nonconventional Coumarins with Far-Red/NIR Emission through Azetidinyl Substitution

    No full text
    Replacement of electron-donating N,N-dialkyl groups with three- or four-membered cyclic amines (e.g., aziridine and azetidine, respectively) has been described as a promising approach to improve some of the drawbacks of conventional fluorophores, including low fluorescent quantum yields (ΦF) in polar solvents. In this work, we have explored the influence of azetidinyl substitution on nonconventional coumarin-based COUPY dyes. Two azetidine-containing scaffolds were first synthesized in four linear synthetic steps and easily transformed into far-red/NIR-emitting fluorophores through N-alkylation of the pyridine moiety. Azetidine introduction in COUPY dyes resulted in enlarged Stokes' shifts with respect to the N,N-dialkylamino-containing parent dyes, but the ΦF were not significantly modified in aqueous media, which is in contrast with previously reported observations in other fluorophores. However, azetidinyl substitution led to an unprecedented improvement in the photostability of COUPY dyes, and high cell permeability was retained since the fluorophores accumulated selectively in mitochondria and nucleoli of HeLa cells. Overall, our results provide valuable insights for the design and optimization of novel fluorophores operating in the far-red/NIR region, since we have demonstrated that three important parameters (Stokes' shifts, ΦF, and photostability) cannot be always simultaneously addressed by simply replacing a N,N-dialkylamino group with azetidine, at least in nonconventional coumarin-based fluorophores.status: publishe

    High Accuracy Classification of Developmental Toxicants by In Vitro Tests of Human Neuroepithelial and Cardiomyoblast Differentiation

    Get PDF
    Human-relevant tests to predict developmental toxicity are urgently needed. A currently intensively studied approach makes use of differentiating human stem cells to measure chemically-induced deviations of the normal developmental program, as in a recent study based on cardiac differentiation (UKK2). Here, we (i) tested the performance of an assay modeling neuroepithelial differentiation (UKN1), and (ii) explored the benefit of combining assays (UKN1 and UKK2) that model different germ layers. Substance-induced cytotoxicity and genome-wide expression profiles of 23 teratogens and 16 non-teratogens at human-relevant concentrations were generated and used for statistical classification, resulting in accuracies of the UKN1 assay of 87–90%. A comparison to the UKK2 assay (accuracies of 90–92%) showed, in general, a high congruence in compound classification that may be explained by the fact that there was a high overlap of signaling pathways. Finally, the combination of both assays improved the prediction compared to each test alone, and reached accuracies of 92–95%. Although some compounds were misclassified by the individual tests, we conclude that UKN1 and UKK2 can be used for a reliable detection of teratogens in vitro, and that a combined analysis of tests that differentiate hiPSCs into different germ layers and cell types can even further improve the prediction of developmental toxicants

    Ethyl alcohol threshold test: a fast, reliable and affordable olfactory Assessment tool for COVID-19 patients

    No full text
    International audienceObjective: COVID-19 patients may present mild symptoms. The identification of paucisymptomatic patients is paramount in order to interrupt the transmission chain of the virus. Olfactory loss could be one of those early symptoms which might help in the diagnosis of COVID-19 patients. In this study, we aim to develop and validate a fast, inexpensive, reliable and easy-to-perform olfactory test for the screening of suspected COVID-19 patients. Study design: Phase I was a case–control study and Phase II a transversal descriptive study. Subjects and methods: Olfaction was assessed with the ethyl alcohol threshold test and symptoms with visual analogue scales. The study was designed in two phases: In Phase I, we compared confirmed COVID-19 patients and healthy controls. In Phase II, patients with suspected COVID-19 infection referred for testing were studied. Results: 275 participants were included in Phase I, 135 in Phase II. The ROC curve showed an AUC of 0.749 in Phase I, 0.737 in Phase II. The cutoff value which offered the highest amount of correctly classified patients was ≥ 2 (10% alcohol) for all age intervals. The odds ratio was 8.19 in Phase I, 6.56 in Phase II with a 75% sensitivity. When cases report normal sense of smell (VAS < 4), it misdiagnoses 57.89% of patients detected by the alcohol threshold test. Conclusion: The olfactory loss assessed with the alcohol threshold test has shown high sensitivity and odds ratio in both patients with confirmed COVID-19 illness and participants with suspected SARS-CoV-2 infection

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    No full text
    International audienceLiquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    No full text
    International audienceLiquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment
    corecore