67 research outputs found

    Black holes and black strings of N=2, d=5 supergravity in the H-FGK formalism

    Get PDF
    We study general classes and properties of extremal and non-extremal static black-hole solutions of N=2, d=5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the black-hole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K_3 \times S^1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.Comment: 33 pages. Revised version: references added. No other change

    The QUIJOTE experiment: project status and first scientific results

    Get PDF
    We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a new polarimeter with the aim of characterizing the polarization of the Cosmic Microwave Background, and other galactic or extra-galactic physical processes that emit in microwaves in the frequency range 10–42 GHz, and at large angular scales (around 1 degree resolution). The experiment has been designed to reach the required sensitivity to detect a primordial gravitational wave component in the CMB, provided its tensor-to-scalar ratio is larger than r ∼ 0.05. The project consists of two telescopes and three instruments which will survey a large sky area from the Teide Observatory to provide I, Q and U maps of high sensitivity. The first QUIJOTE instrument, known as Multi-Frequency Instrument (MFI), has been surveying the northern sky in four individual frequencies between 10 and 20 GHz since November 2012, providing data with an average sensitivity of 80 µK beam−1 in Q and U in a region of 20, 000 square-degrees. The second instrument, or Thirty-GHz Instrument (TGI), is currently undergoing the commissioning phase, and the third instrument, or Forty-GHz Instrument (FGI), is in the final fabrication phase. Finally, we describe the first scientific results obtained with the MFI. Some specific regions, mainly along the Galactic plane, have been surveyed to a deeper depth, reaching sensitivities of around 40 µK beam−1. We present new upper limits on the polarization of the anomalous dust emission, resulting from these data, in the Perseus molecular complex and in the W43 molecular complex

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    The QUIJOTE experiment: project status and first scientific results

    Get PDF
    We present the current status of the QUIJOTE (Q-U-I JOint TEnerife) experiment, a new polarimeter with the aim of characterizing the polarization of the Cosmic Microwave Background, and other galactic or extra-galactic physical processes that emit in microwaves in the frequency range 10–42 GHz, and at large angular scales (around 1 degree resolution). The experiment has been designed to reach the required sensitivity to detect a primordial gravitational wave component in the CMB, provided its tensor-to-scalar ratio is larger than r ∼ 0.05. The project consists of two telescopes and three instruments which will survey a large sky area from the Teide Observatory to provide I, Q and U maps of high sensitivity. The first QUIJOTE instrument, known as Multi-Frequency Instrument (MFI), has been surveying the northern sky in four individual frequencies between 10 and 20 GHz since November 2012, providing data with an average sensitivity of 80 µK beam−1 in Q and U in a region of 20, 000 square-degrees. The second instrument, or Thirty-GHz Instrument (TGI), is currently undergoing the commissioning phase, and the third instrument, or Forty-GHz Instrument (FGI), is in the final fabrication phase. Finally, we describe the first scientific results obtained with the MFI. Some specific regions, mainly along the Galactic plane, have been surveyed to a deeper depth, reaching sensitivities of around 40 µK beam−1. We present new upper limits on the polarization of the anomalous dust emission, resulting from these data, in the Perseus molecular complex and in the W43 molecular complex

    The history of mass dispersal around Herbig Ae/Be stars

    No full text
    We present a systematic study of the material surrounding intermediate-mass stars. Our sample includes 34 Herbig Ae/Be (HAEBE) stars of different ages and luminosities. This is a quite complete representation of the whole class of HAEBE stars and consequently, our conclusions should have a solid statistical meaning. In addition, we have observed 2 intermediate-mass protostars and included published data on 15 protostellar objects in order to determine the evolution of the circumstellar material in the early stages of stellar evolution. All the HAEBE stars have been classified according with the three Types already defined in Fuente et al. ([CITE]): Type I stars are immersed in a dense clump and have associated bipolar outflows, their ages are ~0.1 Myr; Type II stars are still immersed in the molecular cloud though not in a dense clump, their ages are between ~a few 0.1 to ~a few Myr; Type III stars have completely dispersed the surrounding material and are located in a cavity of the molecular cloud, their ages are >1 Myr. Our observations are used to reconstruct the evolution of the circumstellar material around intermediate-mass stars and investigate the mass dispersal mechanisms at the different stages of the stellar evolution. Our results can be summarized as follows: intermediate-mass stars disperse ≥90% of the mass of the parent clump during the protostellar phase. During this phase, the energetic outflows sweep out the gas and dust forming a biconical cavity while the equatorial material is infalling to feed the circumstellar disk and eventually the protostar. In this way, the density structure of the parent clump remains well described by a density law nrβn\propto r^\beta with 2<β<1-2 <\beta<-1 although a large fraction of the mass is dispersed. In ~a few 0.1 Myr, the star becomes visible and the outflow fades. Some material is dispersed from ~a few 0.1 to ≥1 Myr. Since the outflow declines and the stars are still too cold to generate UV photons, stellar winds are expected to be the only dispersal mechanism at work. In 1 Myr an early-type star (B0-B5) and in ≥1 to 10 Myr a late-type star (later than B6) meets the ZAMS. Now the star is hot enough to produce UV photons and starts excavating the molecular cloud. Significant differences exist between early-type and late-type stars at this evolutionary stage. Only early-type stars are able to create large (R>0.08R>0.08 pc) cavities in the molecular cloud, producing a dramatic change in the morphology of the region. This difference is easily understood if photodissociation plays an important role in the mass dispersal around these objects

    First Report of Thelazia callipaeda in Wildlife from Spain

    No full text
    We describe the first cases of infection by the nematode, Thelazia callipaeda (Spirurida, Thelaziidae) haplotype 1 in two red foxes (Vulpes vulpes) in Spain and discuss the potential role of red foxes as a reservoir for T. callipaeda
    corecore