26 research outputs found

    Ceria-based catalysts for NOx removal in NSR processes: A fundamental study of the catalyst modifications explored by in situ techniques

    Get PDF
    In this work, a fundamental and systematic study was conducted, leading to a better understanding of the phenomena occurring on the catalyst’s surface during the NOx reduction process in NSR systems. For this purpose, ceria-based catalysts, with Cu in substitution of noble metal, have been synthesized and deeply characterized by means of XRF, XPS, in situ (XRD, Raman spectroscopy and DRIFTS), temperature-programmed reduction under H2 (H2-TPR) and under NO reaction (NO isothermal reaction + NO-TPR). The whole results show the key role of copper to promote the reducibility and the creation of oxygen vacancies, allowing a high NO consumption and fast kinetics of N2O and N2 formation, until the oxygen vacancies consumption takes place. The study of the surface reactions taking place in the formation of adsorbed NOx species and the oxygen vacancies consumption with NO uptake is complex; however, a hydroxyl consumption route is found to be involved. The reduction of NO provided higher levels of N2 at higher temperatures; also, a very high efficiency of the previously created oxygen vacancies was found for this process.The authors gratefully acknowledge the financial support of Generalitat Valenciana (PROMETEO/2018/076 project) and the Spanish Ministry of Science and Innovation (PID2019-105542RB-I00 project) and the UE-FEDER funding. Martínez-Munuera also acknowledges Spanish Ministry of Science, Innovation and Universities for the financial support through a FPU grant (FPU17/00603)

    Study of Ce/Pr ratio in ceria-praseodymia catalysts for soot combustion under different atmospheres

    Get PDF
    The effect of Ce/Pr ratio on ceria-praseodymia on structural and surface properties is studied. The catalytic activity towards soot combustion under NOx/O2 and O2/N2 atmospheres is also evaluated, together with the NO oxidation activity to NO2. CexPr1-xO2-δ compositions (x = 0.8, 0.5 and 0.2) have been prepared along with ceria and praseodymia. Catalysts were prepared by co-precipitation. The Ce0.5Pr0.5O2-δ composition, was also prepared by nitrate calcination. Ceria-praseodymia mixed oxides yield reduction profiles shifted to lower temperatures, higher NO oxidation activities to NO2 and improved catalytic activities for soot combustion with respect to pure ceria. Ce0.5Pr0.5O2-δ was the most active one. Under NOx/O2, it has greater soot combustion activity if it is prepared by nitrate calcination. However, under O2/N2, the co-precipitation method is more favorable because of the better dopant insertion achieved in the ceria lattice, which seems to lead better oxygen mobility on the surface and in the bulk oxide.The authors gratefully acknowledge the financial support of Generalitat Valenciana (PROMETEO/2018/076 project) and the Spanish Ministry of Economy and Competitiveness (CTQ2015-64801-R project) and the UE-FEDER funding. J.C.M.M. also acknowledges Spanish Ministry of Science, Innovation and Universities for the financial support through a FPU grant (FPU17/00603)

    Lattice oxygen activity in ceria-praseodymia mixed oxides for soot oxidation in catalysed Gasoline Particle Filters

    Get PDF
    Two series of ceria-praseodymia catalysts with varying composition have been systematically investigated in the oxidation of soot under inert atmosphere in order to find out its potential utilization in Gasoline Particulate Filters for GDI engines. The samples have been widely characterized by XRD, Raman spectroscopy, TEM, FESEM, XPS, N2 adsorption at −196 °C and O2-TPD. The praseodymium incorporation onto the ceria enhances the oxygen mobility in the subsurface/bulk of the sample favoring higher O2 released amounts under inert atmosphere. The intermediate compositions can promote more accentuated O2 emissions at moderate temperatures (up to 500 °C). The efficiency of the own active oxygen species released from the catalyst to oxidize soot under inert atmosphere, even under loose contact mode, has been well demonstrated. The pathways of the mechanism taking place seem to be dependent on the temperature and mainly on the type of contact among soot and catalyst. Under loose contact conditions and low-medium temperatures, the O2 freshly emitted from the catalyst can oxidize soot more efficiently than a diluted O2-gas stream. Conversely, under more severe conditions (higher temperature or tight contact conditions), the soot acts as a “driving force” and the own lattice oxygen species can be transferred directly towards soot surface in an efficient way.The authors gratefully acknowledge the financial support of Generalitat Valenciana (PROMETEO/2018/076), MINECO (CTQ2015-64801-R) and the UE (FEDER funding). Also, JCMM acknowledges Spanish Ministry of Science, Innovation and Universities for the financial support through a FPU grant (FPU17/00603)

    Isotopic study of the influence of oxygen interaction and surface species over different catalysts on the soot removal mechanism

    Get PDF
    In order to improve the catalytic formulations for soot removal in after-treatment emission control technologies for gasoline and diesel engine vehicle, an isotopic study was approached using transitory labeled oxygen response method over model catalysts that allows the unraveling of soot oxidation mechanism. Ce-based materials promote oxygen exchange associated with the high population of lattice oxygen species (O2-) denoted as OI type. The incorporation of praseodymium produces a Pr3+ enrichment that decrease the energy for oxygen release and increase oxygen mobility through surface and subsurface oxygen centers (OII type) depending on the synthesis procedure. For PtBaK catalyst, OIII species are responsible for oxygen exchange. Gas-solid reaction between soot and gas phase molecular oxygen is responsible for direct uncatalyzed soot oxidation. For ceria containing catalysts, low-temperature soot removal takes place through the intervention of lattice atomic species and superoxide species. For DPNR model catalyst, PtBaK/Al2O3, the soot elimination occurs with the intervention OIII type centers. In the presence NO, the assisted and cooperative mechanism due to NO2 and the intervention of the adsorbed nitrate species on the trimetallic catalyst enhances soot removal capacity.MCR acknowledges the postdoctoral fellowship obtained from the University of Malaga. MCR, CH, MAL and LJA want to thank the financial support of CTQ 2017-87909R project. MCR also want to thank the University of Alicante for the financial support for the internship (INV19-07). JCMM and AGG gratefully acknowledge the financial support of Generalitat Valenciana (PROMETEO/2018/076 project) and the Spanish Ministry of Science, Innovation and Universities (PID2019-105542RB-I00 project) and the UE-FEDER funding. JCMM also acknowledges Spanish Ministry of Science, Innovation and Universities for the financial support through a FPU grant (FPU17/00603)

    Improved NOx Storage/Release Properties of Ceria-Based Lean NOx Trap Compositions with MnOx Modification

    Get PDF
    Ceria/spinel-based lean NOx trap compositions with and without barium were modified with MnOx via incipient wetness impregnation. The effect of the MnOx layer on the aged materials (850 °C) as to the NOx storage and release properties was investigated via NOx adsorption (500 ppm NO/5% O2/balance N2) carried out at 300 °C in a dual-bed with a 1% Pt/Al2O3 catalyst placed upstream of the samples to generate sufficient amounts of NO2 required for efficient NOx storage. Subsequent temperature programmed desorption (TPD) experiments were carried out under N2 from 300 °C to 700 °C. The addition of MnOx to the barium free composition led to a slightly reduced NOx storage capacity but all of the ad-NOx species were released from this material at significantly lower temperatures (ΔT ≈ 100 °C). The formation of a MnOx layer between ceria/spinel and barium had a remarkable effect on ageing stability as the formation of BaAl2O4 was suppressed in favour of BaMnO3. The presence of this phase resulted in an increased NOx storage capacity and lower desorption temperatures. Furthermore, NOx adsorption experiments carried out in absence of the Pt-catalyst also revealed an unexpected high NOx storage ability at low NO2/NO ratios, which could make this composition suitable for various lean NOx trap catalysts (LNT) related applications.A.G.-G. gratefully acknowledges the general financial support of Generalitat Valenciana (PROMETEO/2018/076), MINECO (CTQ2015-64801-R) and the UE (FEDER funding). J.C.M.-M. also acknowledges Spanish Ministry of Science, Innovation and Universities for the financial support through a FPU grant (FPU17/00603)

    Isotopic study of the influence of oxygen interaction and surface species over different catalysts on the soot removal mechanism

    Get PDF
    In order to improve the catalytic formulations for soot removal in after-treatment emission control technologies for gasoline and diesel engine vehicle, an isotopic study was approached using transitory labeled oxygen response method over model catalysts that allows the unraveling of soot oxidation mechanism. Ce-based materials promote oxygen exchange associated with the high population of lattice oxygen species (O2-) denoted as OI type. The incorporation of praseodymium produces a Pr3+ enrichment that decrease the energy for oxygen release and increase oxygen mobility through surface and subsurface oxygen centers (OII type) depending on the synthesis procedure. For PtBaK catalyst, OIII species are responsible for oxygen exchange. Gas-solid reaction between soot and gas phase molecular oxygen is responsible for direct uncatalyzed soot oxidation. For ceria containing catalysts, low-temperature soot removal takes place through the intervention of lattice atomic species and superoxide species. For DPNR model catalyst, PtBaK/Al2O3, the soot elimination occurs with the intervention of OIII type centers. In the presence NO, the assisted and cooperative mechanism due to NO2 and the intervention of the adsorbed nitrate species on the trimetallic catalyst enhances soot removal capacity.MCR acknowledges the postdoctoral fellowship obtained from the University of Malaga. MCR, CH, MAL and LJA want to thank the financial support of CTQ 2017-87909R project. MCR also want to thank the University of Alicante for the financial support for the internship (INV19-07). JCMM and AGG gratefully acknowledge the financial support of Generalitat Valenciana (PROMETEO/2018/076 project) and the Spanish Ministry of Science, Innovation and Universities (PID2019-105542RB-I00 project) and the UE-FEDER funding. JCMM also acknowledges Spanish Ministry of Science, Innovation and Universities for the financial support through a FPU grant (FPU17/00603)

    NO Oxidation on Lanthanum-Doped Ceria Nanoparticles with Controlled Morphology

    Get PDF
    The present work aims to assess the impact of morphology and reducibility on lanthanum-doped ceria nanocatalysts with controlled morphology on the NO oxidation reaction. Specifically, samples were prepared using a hydrothermal method incorporating lanthanum at varying molar concentrations (0, 5, 10, and 15 mol.%) into ceria with a controlled morphology (nanocubes and nanorods). The structural, compositional, and redox characterization of these catalysts has been performed via scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (X-EDS), inductively coupled plasma (ICP), hydrogen temperature-programmed reduction (H2-TPR), and oxygen storage capacity (OSC). NO oxidation catalytic tests were conducted, and the results were compared with estimated curves (obtained by considering the proportions of the corresponding components), which revealed the presence of a synergistic effect between lanthanum and ceria. The degree of enhancement was found to depend on both the morphology and the amount of lanthanum incorporated into CeO2. These findings may facilitate the optimization of features concerning ceria-based nanocatalysts for the removal of NOx emissions from exhaust gases.This research was funded by Generalitat Valenciana (CIPROM/2021/070 project), the Spanish Ministry of Science and Innovation/Research Spanish Agency (PID2019-105542RB-I00/AEI/10.13039/501100011033, PID2020-113006RB-I00/AEI/10.13039/501100011033 and PID2020-113809RB-C33 projects), and UE-FEDER funding

    Cultura, innovación, internacionalización y vinculación de la Pyme con la Universidad : barómetro económico de la PYME 2011

    Get PDF
    Este barómetro corresponde al año 2011 y recoge información sobre: •Características generales de la empresa y expectativas. •Grado y capacidad de internacionalización de la empresa. •Relación de la empresa con el medio-ambiente. •Tecnología y grado de innovación de la empresa. •Organización, cultura empresarial y estrategia. •Vinculación de la empresa con la Universidad. •Evolución del rendimiento de la empresa respecto de la competenciaRegión de Murcia, Consejería de Universidades, Empresas e Innovación, INFO (Instituto de Fomento de la Regiñon de Murcia

    La química del jabón

    No full text
    A través de sencillos experimentos se descubrirán algunas de las propiedades más interesantes de los surfactantes (estructura, tensión superficial y formación de espumas)
    corecore