36 research outputs found

    Autoantigenic nuclear proteins of a clinically atypical renal vasculitis

    Get PDF
    © 2008 Avila et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Na+, K+-ATPase Subunit Composition in a Human Chondrocyte Cell Line; Evidence for the Presence of α1, α3, β1, β2 and β3 Isoforms

    Get PDF
    Membrane transport systems participate in fundamental activities such as cell cycle control, proliferation, survival, volume regulation, pH maintenance and regulation of extracellular matrix synthesis. Multiple isoforms of Na+, K+-ATPase are expressed in primary chondrocytes. Some of these isoforms have previously been reported to be expressed exclusively in electrically excitable cells (i.e., cardiomyocytes and neurons). Studying the distribution of Na+, K+-ATPase isoforms in chondrocytes makes it possible to document the diversity of isozyme pairing and to clarify issues concerning Na+, K+-ATPase isoform abundance and the physiological relevance of their expression. In this study, we investigated the expression of Na+, K+-ATPase in a human chondrocyte cell line (C-20/A4) using a combination of immunological and biochemical techniques. A panel of well-characterized antibodies revealed abundant expression of the α1, β1 and β2 isoforms. Western blot analysis of plasma membranes confirmed the above findings. Na+, K+-ATPase consists of multiple isozyme variants that endow chondrocytes with additional homeostatic control capabilities. In terms of Na+, K+-ATPase expression, the C-20/A4 cell line is phenotypically similar to primary and in situ chondrocytes. However, unlike freshly isolated chondrocytes, C-20/A4 cells are an easily accessible and convenient in vitro model for the study of Na+, K+-ATPase expression and regulation in chondrocytes

    Genetic Profiling of Glucocorticoid (NR3C1) and Mineralocorticoid (NR3C2) Receptor Polymorphisms before Starting Therapy with Androgen Receptor Inhibitors: A Study of a Patient Who Developed Toxic Myocarditis after Enzalutamide Treatment

    No full text
    Enzalutamide is a nonsteroidal inhibitor of the androgen receptor (AR) signaling pathway and is used to treat patients with metastatic castration-resistant prostate cancer. However, the risk of cardiovascular-related hospitalization in patients with no contraindications for the use of enzalutamide is about 1–2%. To date, the underlying molecular basis of this has not been established. The androgen receptor, glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) are nuclear receptors that share structural similarities and have closely related DNA-binding sites and coregulators. In non-epithelial cells, a fine balance of the activities of these receptors is essential to ensure correct cellular function. In this study, we present a molecular characterization of these nuclear receptors in a prostate cancer patient who developed congestive heart failure after enzalutamide treatment. White cell RNAseq revealed a homozygous rs5522 MR polymorphism and both the rs143711342 and rs56149945 GR polymorphisms, carried in different alleles. No different specific splice isoforms were detected. Recent research suggests that AR inhibition by enzalutamide makes available a coregulator that specifically interacts with the rs5522-mutated MR, increasing its activity and producing adverse effects on cardiovascular health. We suggest an evaluation of the MR rs5522 polymorphism before starting therapy with AR inhibitors

    Over-production of therapeutic growth factors for articular cartilage regeneration by protein production platforms and protein packaging cell lines

    Get PDF
    Abstract This review article focuses on the current state-of-the-art cellular and molecular biotechnology for the over-production of clinically relevant therapeutic and anabolic growth factors. We discuss how the currently available tools and emerging technologies can be used for the regenerative treatment of osteoarthritis (OA). Transfected protein packaging cell lines such as GP-293 cells may be used as “cellular factories” for large-scale production of therapeutic proteins and pro-anabolic growth factors, particularly in the context of cartilage regeneration. However, when irradiated with gamma or x-rays, these cells lose their capacity for replication, which makes them safe for use as a live cell component of intra-articular injections. This innovation is already here, in the form of TissueGene-C, a new biological drug that consists of normal allogeneic primary chondrocytes combined with transduced GP2-293 cells that overexpress the growth factor transforming growth factor β1 (TGF-β1). TissueGene-C has revolutionized the concept of cell therapy, allowing drug companies to develop live cells as biological drug delivery systems for direct intra-articular injection of growth factors whose half-lives are in the order of minutes. Therefore, in this paper, we discuss the potential for new innovations in regenerative medicine for degenerative diseases of synovial joints using mammalian protein production platforms, specifically protein packaging cell lines, for over-producing growth factors for cartilage tissue regeneration and give recent examples. Mammalian protein production platforms that incorporate protein packaging eukaryotic cell lines are superior to prokaryotic bacterial expression systems and are likely to have a significant impact on the development of new humanized biological growth factor therapies for treating focal cartilage defects and more generally for the treatment of degenerative joint diseases such as OA, especially when injected directly into the joint.Simple summary Osteoarthritis (OA) is the most common form of arthritis across the world. Most of the existing drugs for OA treat the symptoms of pain and inflammation. There are no drugs that can dure the disease. There are a number of new treatments for OA including cell therapy and gene therapy. This articles outlines the concept behind TissueGene-C, a new biological drug for OA. This new treatment includes cartilage cells mixed with a genetically modified cell line called GP2-293, which is effectively a “drug factory”, over-producing the growth factors that are important for cartilage regeneration and changing the environment inside joints. The mixture is injected into the affected knee joint. These cells are designed to be short-lived and cannot reproduce. Therefore, after they have done their job, they die and are cleared by immune cells. This is a new and modern approach to treating OA and TissueGene-C is the prototype cell therapy for OA. In the future, it is entirely possible to combine different clones of genetically engineered cells like GP2-293 that have been designed to over-produce a growth factor or biological drug with cells from the cartilage endplate of the intervertebral disc to treat degeneration in the spine

    Sodium transport systems in human chondrocytes l. Morphological and functional expression of the Na+,K+-ATPase α and β subunit isoforms in healthy and arthritic chondrocytes

    Get PDF
    The chondrocyte is the cell responsible for the maintenance of the articular cartilage matrix. The negative charges of proteoglycans of the matrix draw cations, principally Na+, into the matrix to balance the negative charge distribution. The Na+,Kf -ATPase is the plasma membrane enzyme that maintains the intracellular Na+ and K+ concentrations. The enzyme is composed of an α and a β subunit, so far, 4α and 3β isoforms have been identified in mammals. Chondrocytes are sensitive to their ionic and osmotic environment and are capable of adaptive responses to ionic environmental perturbations particularly changes to extracellular [Na+]. In this article we show that human fetal and adult chondrocytes express three α (α1, α2 and the neural form of α3) and the three β isoforms (β1, β2 and β3) of the Na+,K+-ATPase. The presence of multiple Na+,K+-ATPase isoforms in the plasma membrane of chondrocytes suggests a variety of kinetic properties that reflects a cartilage specific and very fine specialization in order to maintain the Na+/K+ gradients. Changes in the ionic and osmotic environment of chondrocytes occur in osteoarthritis and rheumatoid arthritis as result of tissue hydration and proteoglycan loss leading to a fall in tissue Na+ and K+ content. Although the expression levels and cellular distribution of the proteins tested do not vary, we detect changes in p-nitrophenylphosphatase activity "in situ" between control and pathological samples. This change in the sodium pump enzymatic activity suggests that the chondrocyte responds to these cationic environmental changes with a variation of the active isozyme types present in the plasma membrane

    Sodium transport systems in human chondrocytes II. Expression of ENaC, Na+/K+/2CI- cotransporter and Na+/H+ exchangers in healthy and arthritic chondrocytes

    Get PDF
    In this article, the second of two, we continue our studies of sodium-dependent transport systems in human cartilage from healthy individuals and with osteoarthritis (OA) and rheumatoid arthritis (RA). We demonstrate the presence of the epithelial sodium channel (ENaC), previously undescribed in chondrocytes. This system is composed of three subunits, α, β and γ. We have shown that the human chondrocytes express at least the α and the β subunit of ENaC. The expression of these subunits is altered in arthritic chondrocytes. In RA samples the quantity of α and β is significantly higher than in control samples. On the other hand, ENaC α and β subunits are absent in the chondrocytes of OA cartilage. Human chondrocytes also possess three isoforms of the Na+/H+ exchanger (NHE), NHE1, NHE2 and NHE3. The NHE system is composed of a single protein and is believed to participate in intracellular pH regulation. Furthermore, our studies indicate that at least one isoform of the electroneutral Naf/K+/2C1- cotransporter (NKCC) is present in human chondrocytes. There are no obvious variations in the relative expression of NHE isoforms or NKCC between healthy and arthritic cartilage. Our data suggests that chondrocytes from arthritic cartilage may adapt to changes in their environmental sodium concentration through variations in ENaC protein levels. ENaC is also likely to serve as a major sodium entry mechanism, a process that, along with cytoskeletal proteins, may be part of mechanotransduction in cartilage

    Epithelial Na, K-ATPase expression is down-regulated in canine prostate cancer; a possible consequence of metabolic transformation in the process of prostate malignancy

    No full text
    Abstract Background An important physiological function of the normal prostate gland is the synthesis and secretion of a citrate rich prostatic fluid. In prostate cancer, citrate production levels are reduced as a result of altered cellular metabolism and bioenergetics. Na, K-ATPase is essential for citrate production since the inward Na+ gradients it generates are utilized for the Na+ dependent uptake of aspartate, a major substrate for citrate synthesis. The objective of this study was to compare the expression of previously identified Na, K-ATPase isoforms in normal canine prostate, benign prostatic hyperplasia (BPH) and prostatic adenocarcinoma (PCa) using immunohistochemistry in order to determine whether reduced citrate levels in PCa are also accompanied by changes in Na, K-ATPase expression. Results Expression of Na, K-ATPase α1 and β1 isoforms was observed in the lateral and basolateral plasma membrane domains of prostatic epithelial cells in normal and BPH prostates. Canine kidney was used as positive control for expression of Na, K-ATPase α1 and γ isoforms. The α1 isoform was detected in abundance in prostatic epithelial cells but there was no evidence of α2, α3 or γ subunit expression. In advanced PCa, Na, K-ATPase α1 isoform expression was significantly lower compared to normal and BPH glands. The abundant basolateral immunostaining observed in normal and BPH tissue was significantly attenuated in PCa. Conclusion The loss of epithelial structure and function and the transformation of normal epithelial cells to malignant cells in the canine prostate have important implications for cellular metabolism and are accompanied by a down regulation of Na, K-ATPase.</p
    corecore