17 research outputs found

    Intracuneate mechanisms underlying primary afferent cutaneous processing in anaesthetized cats

    Get PDF
    [Abstract] The cutaneous primary afferents from the upper trunk and forelimbs reach the medial cuneate nucleus in their way towards the cerebral cortex. The aim of this work was twofold: (i) to study the mechanisms used by the primary afferents to relay cutaneous information to cuneate cuneolemniscal (CL) and noncuneolemniscal (nCL) cells, and (ii) to determine the intracuneate mechanisms leading to the elaboration of the output signal by CL cells. Extracellular recordings combined with microiontophoresis demonstrated that the primary afferent cutaneous information is communicated to CL and nCL cells through AMPA, NMDA and kainate receptors. These receptors were sequentially activated: AMPA receptors participated mainly during the initial phase of the response, whereas kainate- and NMDA-mediated activity predominated during a later phase. The involvement of NMDA receptors was confirmed by in vivo intracellular recordings. The cutaneous-evoked activation of CL cells was decreased by GABA and increased by glycine acting at a strychnine-sensitive site, indicating that glycine indirectly affects CL cells. Two subgroups of nCL cells were distinguished based on their sensitivity to iontophoretic ejection of glycine and strychnine. Overall, the results support a model whereby the primary afferent cutaneous input induces a centre-surround antagonism in the cuneate nucleus by activating (via AMPA, NMDA and kainate receptors) and disinhibiting (via serial glycinergic–GABAergic interactions) a population of CL cells with overlapped receptive fields that at the same time inhibit (via GABAergic cells) other neighbouring CL cells with different receptive fields.Ministerio de Ciencia y Tecnología; BFI 2003-0194

    Moderate exercise prevents insulin resistance and changes in adrenocortical morphology and function in rats fed a sucrose-enriched diet

    Get PDF
    Introducción: niveles elevados de glucocorticoides se asocian a las alteraciones somáticas y bioquímicas presentes en los pacientes y en animales con insulinorresistencia (IR). Hemos demostrado previamente que la IR inducida por una dieta rica en sacarosa (DRS) induce cambios morfológicos y funcionales a nivel adrenocortical y que estas alteraciones pueden evitarse mediante la administración simultánea de un agonista PPAR-γ. Objetivos: en el presente estudio evaluamos el impacto de un protocolo de ejercicio moderado sobre las alteraciones morfológicas y funcionales adrenocorticales asociadas con el desarrollo de IR inducida por una DRS administrada durante siete semanas.Metodología. Resultados: los animales (ratas Wistar macho adultas) tratados con la DRS (agregado de sacarosa al 30% en el agua de bebida) mostraron un incremento del peso corporal y de los panículos adiposos, así como de los niveles séricos de glucosa, insulina y triglicéridos. La respuesta glucémica a la administración de insulina i.p. se vio claramente menoscabada. Se observó una infiltración lipídica de la corteza adrenal, con aumento de la expresión de proteínas esteroidogénicas y marcadores de inflamación (IL-1β, TNF-α, iNOS, COX-2) y un incremento marcado de la corticosteronemia basal. El protocolo de ejercicio consistió en correr en una cinta continua adaptada especialmente durante un máximo de 7 min/día. Este ejercicio moderado previno la aparición de los cambios somáticos y bioquímicos característicos del estado de IR y la infiltración lipídica adrenocortical, revirtiendo además los cambios inflamatorios y normalizando la corticosteronemia. Conclusiones: nuestros resultados subrayan el rol deletéreo del consumo exagerado de carbohidratos simples conteniendo fructosa y sugieren que el ejercicio moderado podría tener efectos adicionales cuando se emplea en el tratamiento de la IR.Introduction: a sustained elevation of glucocorticoid production has been associated with the somatic and biochemical changes observed in insulin-resistant patients and in animal models of insulin resistance (IR) as well. We previously demonstrated that sucrose-induced IR affects adrenocortical morphology and function, and that these abnormalities could be prevented by the administration of an insulin-sensitizing PPAR-γ agonist. Objetives: in this study, we analyzed the impact of moderate exercise on changes in adrenocortical function and morphology associated with the development of IR, generated in male adult rats by the addition of 30% sucrose to the drinking water for 7 weeks. Methodology. Results: body and adipose tissue weights increased in sucrose-treated animals, who also displayed higher glycemic and insulinemic levels as well as hypertriglyceridemia. An altered glycemic response to an i.p. insulin test was also detected. Adrenal glands showed a neutral lipid infiltration and increased expression levels of StAR, CYP11A1, IL-1β, TNF-α, iNOS and COX-2. Furthermore, sucrose-treated animals exhibited higher basal corticosterone levels. Exercise training sessions consisted of running on an adapted motorized treadmill for up to 7 min/day. This moderate exercise protocol fully prevented the instauration of the IR-associated somatic and metabolic changes as well as the lipidic infiltration of the adrenal glands, and reversed the inflammatory changes and the increase in corticosterone output. Conclusions: our results underline the negative impact of high dietary fructose consumption, and suggest that moderate exercise could exert additional beneficial effects when employed as a therapeutic strategy in the management of IR.Fil: Martinez Calejman, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Mercau, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Repetto, Esteban Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Astort, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Arias, Pablo. Universidad Nacional de Rosario. Facultad de Cs.médicas. Escuela de Cs.médicas. Cátedra de Fisiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cymeryng, Cora Betriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentin

    The cold-sensing ion channel TRPM8 regulates central and peripheral clockwork and the circadian oscillations of body temperature

    Get PDF
    [Abstract] Aim: Physiological functions in mammals show circadian oscillations, synchronized by daily cycles of light and temperature. Central and peripheral clocks participate in this regulation. Since the ion channel TRPM8 is a critical cold sensor, we investigated its role in circadian function. Methods: We used TRPM8 reporter mouse lines and TRPM8-deficient mice. mRNA levels were determined by in situ hybridization or RT-qPCR and protein levels by immunofluorescence. A telemetry system was used to measure core body temperature (Tc). Results: TRPM8 is expressed in the retina, specifically in cholinergic amacrine interneurons and in a subset of melanopsin-positive ganglion cells which project to the central pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. TRPM8-positive fibres were also found innervating choroid and ciliary body vasculature, with a putative function in intraocular temperature, as shown in TRPM8-deficient mice. Interestingly, Trpm8-/- animals displayed increased expression of the clock gene Per2 and vasopressin (AVP) in the SCN, suggesting a regulatory role of TRPM8 on the central oscillator. Since SCN AVP neurons control body temperature, we studied Tc in driven and free-running conditions. TRPM8-deficiency increased the amplitude of Tc oscillations and, under dim constant light, induced a greater phase delay and instability of Tc rhythmicity. Finally, TRPM8-positive fibres innervate peripheral organs, like liver and white adipose tissue. Notably, Trpm8-/- mice displayed a dysregulated expression of Per2 mRNA in these metabolic tissues. Conclusion: Our findings support a function of TRPM8 as a temperature sensor involved in the regulation of central and peripheral clocks and the circadian control of Tc.Ministerio de Ciencia e Innovación (España); RT2018-099995-B100Ministerio de Ciencia e Innovación (España); AEI/10.13039/501100011033Generalitat Valenciana; PROMETEO/2021/031Ministerio de Asuntos Económicos y Transformación Digital (España); BES-2011-04706

    Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species

    No full text
    PMCID: PMC1574165.-- Final full text version available at: http://dx.doi.org/10.1038/sj.bjp.0705576[Objective] The main aim of this investigation was to delineate the distribution of the 5-HT7 receptor in human brain. Autoradiographic studies in guinea-pig and rat brain were also carried out in order to revisit and compare the anatomical distribution of 5-HT7 receptors in different mammalian species.[Methods] Binding studies were performed in rat frontal cortex membranes using 10 nM [3H]mesulergine in the presence of raclopride (10 μM) and DOI (0.8 μM). Under these conditions, a binding site with pharmacological characteristics consistent with those of the 5-HT7 receptors was identified (rank order of binding affinity values: 5-CT > 5-HT > 5-MeOT > mesulergine ≈methiothepin >8-OH-DPAT = spiperone ≈(+)-butaclamol >> imipramine ≈(±)-pindolol >> ondansetron ≈clonidine ≈prazosin).[Results] The autoradiographic studies revealed that the anatomical distribution of 5-HT7 receptors throughout the human brain was heterogenous. High densities were found over the caudate and putamen nuclei, the pyramidal layer of the CA2 field of the hippocampus, the centromedial thalamic nucleus, and the dorsal raphe nucleus. The inner layer of the frontal cortex, the dentate gyrus of the hippocampus, the subthalamic nucleus and superior colliculus, among others, presented intermediate concentrations of 5-HT7 receptors. A similar brain anatomical distribution of 5-HT7 receptors was observed in all three mammalian species studied.[Conclusions] By using [3H]mesulergine, we have mapped for the first time the anatomical distribution of 5-HT7 receptors in the human brain, overcoming the limitations previously found in radiometric studies with other radioligands, and also revisiting the distribution in guinea-pig and rat brain.This study was supported by a grant from the Spanish Ministry of Science and Technology (CICYT) SAF98-0064-C02-01. FJM-C held a junior research position by the Spanish Ministry of Science and Technology.Peer reviewe

    Role of CREB on heme oxygenase-1 induction in adrenal cells: Involvement of the PI3K pathway

    No full text
    In addition to the well-known function of ACTH as the main regulator of adrenal steroidogenesis, we have previously demonstrated its effect on the transcriptional stimulation of HO-1 expression, a component of the cellular antioxidant defense system. In agreement, we hereby demonstrate that, in adrenocortical Y1 cells, HO-1 induction correlates with a significant prevention of the generation of reactive oxygen species induced by H2O2/Fe2+. ACTH/cAMP-dependent activation of redox-imbalanced related factors such as NRF2 or NFκB and the participation of MAPKs in this mechanism was, however, discarded based on results with specific inhibitors and reporter plasmids. We suggest the involvement of CREB in HO-1 induction by ACTH/cAMP, as transfection of cells with a dominant-negative isoform of CREB (DN-CREB-M1) decreased, while overexpression of CREB increased HO-1 protein levels. Sequence screening of the murine HO-1 promoter revealed CRE-like sites located at −146 and −37 of the transcription start site and ChIP studies indicated that this region recruits phosphorylated CREB (pCREB) upon cAMP stimulation in Y1 cells. In agreement, H89 (PKA inhibitor) or cotransfection with DN-CREB-M1 prevented the 8Br-cAMP-dependent increase in luciferase activity in cells transfected with pHO-1[−295/+74].LUC. ACTH and cAMP treatment induced the activation of the PI3K/Akt signaling pathway in a PKA-independent mechanism. Inhibition of this pathway prevented the cAMP-dependent increase in HO-1 protein levels and luciferase activity in cells transfected with pHO-1[−295/+74].LUC. Finally, here we show a crosstalk between the cAMP/PKA and PI3K pathways that affects the binding of p-CREB to its cognate element in the murine promoter of the Hmox1 gene.Fil: Astort, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Repetto, Esteban Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Rocha Viegas, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Mercau, María Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Sanchez Puch, Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Finkielstein, C. V.. Polytechnic Institute and State University; Estados UnidosFil: Pecci, Adali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Cymeryng, Cora Betriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentin

    High glucose-induced changes in steroid production in adrenal cells

    Get PDF
    Background: Increased activity of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in enhanced adrenocorticotropin (ACTH) and serum glucocorticoid levels, has been described in patients with diabetes mellitus and in animal models of this disease; however, altered steroid production by adrenocortical cells could result from local changes triggered by increased reactive oxygen species (ROS), induced in turn by chronic hyperglycaemia. Experiments were designed (1) to analyse the effects of incubating murine adrenocortical cells in hyperglycaemic media on the generation of oxidative stress, on steroid synthesis and on its modulation by the activity of haeme oxygenase (HO); and (2) to evaluate the effect of antioxidant treatment on these parameters. Methods: Y1 cells were incubated for 7 days with either normal or high glucose (HG, 30 mmol/L) concentrations, with or without antioxidant treatment. Parameters of oxidative stress and expression levels of haeme oxygenase-1 (HO-1), nitrite levels, L-arginine uptake and progesterone production were determined. Results: HG augmented ROS and lipoperoxide production, decreasing glutathione (GSH) levels and increasing antioxidant enzymes and HO-1 expression. Basal progesterone production was reduced, while a higher response to ACTH was observed in HG-treated cells. The increase in HO-1 expression and the effects on basal steroid production were abolished by antioxidant treatment. Inhibition of HO activity increased basal and ACTH-stimulated steroid release. Similar results were obtained by HO-1 gene silencing while the opposite effect was observed in Y1 cells overexpressing HO-1. Conclusions: HG induces oxidative stress and affects steroid production in adrenal cells; the involvement of HO activity in the modulation of steroidogenesis in Y1 cells is postulated.Fil: Astort, Francisco. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Repetto, Esteban Martín. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Martinez Calejman, Camila. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Cipelli, J. M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; ArgentinaFil: Sanchez, Rocio. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Di Gruccio, Juan M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Mercau, María Elisa. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Pignataro, Omar Pedro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Arias, Pablo. Universidad Complutense de Madrid. Facultad de Medicina. Departamento de Fisiología; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cymeryng, Cora Betriz. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentin
    corecore