19,455 research outputs found

    Dynamics of a Rydberg hydrogen atom near a topologically insulating surface

    Full text link
    We investigate the classical dynamics of a Rydberg hydrogen atom near the surface of a planar topological insulator. The system is described by a Hamiltonian consisting of the free-hydrogen part and the hydrogen-surface potential. The latter includes the interactions between the electron and both image electric charges and image magnetic monopoles. Owing to the axial symmetry, the zz component of angular momentum lzl_{z} is conserved. Here we consider the lz=0l_{z} = 0 case. The structure of the phase space is explored extensively by means of numerical techniques and Poincar\'{e} surfaces of section for the recently discovered topological insulator TlBiSe2_{2}. The phase space of the system is separated into regions of vibrational and rotational motion. We show that vibrational-rotational-vibrational type transitions can be tuned with the topological magnetoelectric polarizability.Comment: Accepted for publication in Europhysics Letter

    Non-unimodular transversely homogeneous foliations

    Get PDF
    We give sufficient conditions for the tautness of a transversely homogenous foliation defined on a compact manifold, by computing its base-like cohomology. As an application, we prove that if the foliation is non-unimodular then either the ambient manifold, the closure of the leaves or the total space of an associated principal bundle fiber over S1S^1.Comment: 33 pages. This paper will appear in Annales de l'Institut Fourier, Grenobl

    High harmonic generation in crystals using Maximally Localized Wannier functions

    Full text link
    In this work, the nonlinear optical response, and in particular, the high harmonic generation of semiconductors is addressed by using the Wannier gauge. One of the main problems in the time evolution of the Semiconductor Bloch equations resides in the fact that the dipole couplings between different bands can diverge and have a random phase along the reciprocal space and this leads to numerical instability. To address this problem, we propose the use of the Maximally Localized Wannier functions that provide a framework to map ab-initio calculations to an effective tight-binding Hamiltonian with great accuracy. We show that working in the Wannier gauge, the basis set in which the Bloch functions are constructed directly from the Wannier functions, the dipole couplings become smooth along the reciprocal space thus avoiding the problem of random phases. High harmonic generation spectrum is computed for a 2D monolayer of hBN as a numerical demonstration

    The entangling side of the Unruh-Hawking effect

    Full text link
    We show that the Unruh effect can create net quantum entanglement between inertial and accelerated observers depending on the choice of the inertial state. This striking result banishes the extended belief that the Unruh effect can only destroy entanglement and furthermore provides a new and unexpected source for finding experimental evidence of the Unruh and Hawking effects.Comment: 4 pages, 4 figures. Added Journal referenc

    Hokupa'a-Gemini Discovery of Two Ultracool Companions to the Young Star HD 130948

    Get PDF
    We report the discovery of two faint ultracool companions to the nearby (d~17.9 pc) young G2V star HD 130948 (HR 5534, HIP 72567) using the Hokupa'a adaptive optics instrument mounted on the Gemini North 8-meter telescope. Both objects have the same common proper motion as the primary star as seen over a 7 month baseline and have near-IR photometric colors that are consistent with an early-L classification. Near-IR spectra taken with the NIRSPEC AO instrument on the Keck II telescope reveal K I lines, FeH, and water bandheads. Based on these spectra, we determine that both objects have spectral type dL2 with an uncertainty of 2 spectral subclasses. The position of the new companions on the H-R diagram in comparison with theoretical models is consistent with the young age of the primary star (<0.8 Gyr) estimated on the basis of X-ray activity, lithium abundance and fast rotation. HD 130948 B and C likely constitute a pair of young contracting brown dwarfs with an orbital period of about 10 years, and will yield dynamical masses for L dwarfs in the near future.Comment: 10 pages, 3 figures, (13 total pages

    Non-equilibrium dynamics of Andreev states in the Kondo regime

    Full text link
    The transport properties of a quantum dot coupled to superconducting leads are analyzed. It is shown that the quasiparticle current in the Kondo regime is determined by the non-equilibrium dynamics of subgap states (Andreev states) under an applied voltage. The current at low bias is suppressed exponentially for decreasing Kondo temperature in agreement with recent experiments. We also predict novel interference effects due to multiple Landau-Zener transitions between Andreev states.Comment: Revtex4, 4 pages, 4 figure

    A Renormalization Group Analysis of the NCG constraints m_{top} = 2\,m_W}, mHiggs=3.14 mWm_{Higgs} = 3.14 \, m_W

    Full text link
    We study the evolution under the renormalization group of the restrictions on the parameters of the standard model coming from Non-Commutative Geometry, namely mtop=2 mWm_{top} = 2\,m_W and mHiggs=3.14 mWm_{Higgs} = 3.14 \, m_W. We adopt the point of view that these relations are to be interpreted as {\it tree level} constraints and, as such, can be implemented in a mass independent renormalization scheme only at a given energy scale μ0\mu_0. We show that the physical predictions on the top and Higgs masses depend weakly on μ0\mu_0.Comment: 7 pages, FTUAM-94/2, uses harvma
    • …
    corecore