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NON-UNIMODULAR TRANSVERSELY
HOMOGENEOUS FOLIATIONS

by Enrique MACÍAS-VIRGÓS
& Pedro L. MARTÍN-MÉNDEZ (*)

Abstract. — We give sufficient conditions for the tautness of a transversely
homogenous foliation defined on a compact manifold, by computing its base-like
cohomology. As an application, we prove that if the foliation is non-unimodular
then either the ambient manifold, the closure of the leaves or the total space of an
associated principal bundle fiber over S1.
Résumé. — En calculant sa cohomologie basique, on donne des conditions suf-

fisantes pour qu’un feuilletage transversalement homogène defini sur une variété
compacte soit minimalisable. Comme application, on démontre que si le feuilletage
est non unimodulaire alors soit la variété ambiante, soit l’adhérence des feuilles,
soit un fibré principal associé au feuilletage, fibrent sur S1.

1. Introduction

A foliation F on a manifold M is transversely homogeneous if its trans-
verse holonomy pseudogroup is generated by the left action of a Lie group G
on a homogeneous space N = G/K. Reference [1] by Álvarez and Nozawa
contais many examples of this type of foliations.
The fine structure of a transversely homogeneous foliation was estab-

lished by R. Blumental in his Ph.D. thesis [2, 3], and it is described in
Theorem 3.2. It can be summarized as follows: there is a holonomy homo-
morphism h : π1(M)→ G] (we denote by G] the quotient of the Lie group
G by its ineffective subgroup). Let Γ be the image of h and let p : M̃ →M
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modular foliation.
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be the covering of M with fundamental group kerh. Then the induced fo-
liation p∗F is given by an h-equivariant submersion f : M̃ → G/K, called
a developing map for F . This structure theorem will be the main tool in
this paper.
When the holonomy pseudogroup Γ preserves an invariant metric, the

foliation is a Riemannian foliation. This condition is ensured, for instance,
by asking the isotropy group K] to be compact.
In the first part of the paper we are interested in computing the so-

called basic or base-like cohomology H(M/F) of the foliation. Base-like
cohomology of a foliation was first introduced by Reinhart [20] and has
been intensively studied since then.
The foliation is unimodular if the top-dimensional basic cohomology

group, Hq(M(F), q = codimF , is not null. In his Ph.D. thesis [5] Carrière
conjectured that, for Riemannian foliations on compact manifolds, being
unimodular is equivalent to being taut, the latter meaning that there exists
a Riemannian metric on M making all leaves minimal submanifolds. This
strong result was finally proved by Masa [18]. A historical account of these
results and their importance can be found in [21].
In [5], Carrière also gave the first example of a Riemannian non-uni-

modular foliation (see Example 6.20), which is in fact a Lie foliation. Lie
foliations are the simplest examples of transversely homogeneous foliations,
whereK = {e} is the trivial subgroup; in other words, they are transversely
modeled on a Lie group with translations as transition maps. In particular,
a Lie foliation is necessarily Riemannian. For these foliations it happens
that H(M/F) equals HΓ(G), the cohomology of Γ-invariants forms on G.
El Kacimi Alaoui and Nicolau proved the following characterization of uni-
modular Lie foliations:

Theorem 1.1 ([8, Theorem 1.2.4]). — Let Γ be the closure of Γ in G.
Assume that the homogeneous space Γ\G is compact and that the groups
G and Γ are unimodular. Then Hn

Γ (G) 6= 0, where n = dimG.

The proof is based on the injectivity of the morphism i∗ : H(g)→ HΓ(G)
induced by the inclusion ΩG(G) ⊂ ΩΓ(G). In general, i∗ is not injective, as
proved by the same authors [8, Example 3.2].
For general transversely homogeneous foliations, Blumenthal [4] proved

(under some hypothesis) thatH(M/F ) equalsHΓ(G/K) (see Theorem4.27).
Recall that a Lie group G is unimodular if its modular function satisfies

|mG| = 1.We shall introduce a related definition (see Subsection 2.2): the
Lie group G is strongly unimodular if mG = 1. We generalize El Kacimi-
Nicolau’s result above, by proving:
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Theorem 1.2. — Assume that W = Γ\G] is compact, the Lie group
G] is strongly unimodular, the subgroup Γ is unimodular and Hq

G]
(N) 6= 0,

for q = dimN . Then Hq
Γ(N) 6= 0.

This time, the proof will rely on the injectivity of the morphism i∗ in-
duced in cohomology by the inclusion ΩG(G/K) ⊂ ΩΓ(G/K) (see Theo-
rem 4.19).
The second part of the paper exploits those cohomological results. Car-

rière’s example cited above is defined on a 3-dimensional manifold T 3
A which

is a torus bundle over S1 and the closures of the leaves are tori. We shall
prove that this is a general situation in the following Theorem:

Theorem 1.3. — Let N = G0/K0 be a homogeneous space, with G0
connected and (K0)] compact and strongly unimodular. Let F be an N -
transversely homogeneous foliation on the compact manifoldM , defined by
a developing map whose fibers have a finite number of connected compo-
nents. If the foliation F is not unimodular, then either M , or the closures
of the leaves, or the total space of the Blumenthal bundle, fiber over S1.

As explained in Section 3.2, what we call the Blumenthal’s fiber bundle
of F is an auxiliary construction which was defined in [3] and later studied
in [7] and [1]. It is a principal K-bundle ρ : f∗(G) → M , and we prove
that its total space is endowed with a Lie foliation that projects onto the
transversely homogeneous foliation F . If F is a Lie foliation then ρ is the
identity.
The proof of Theorem 1.3 depends on Tischler’s theorem [23] about folia-

tions defined by a non-singular closed 1-form ω on a compact manifold. This
corresponds to a Lie foliation with G = R, and it happens that p∗ω = df ,
for the developing map f , while the holonomy group Γ is the group of pe-
riods of the form ω. By deforming ω, Tischler proved that this group turns
to be discrete and the manifold M fibers over S1.
In fact, Theorem 1.3 can be reformulated as follows: assume that the Lie

group G is connected and that the foliation is not unimodular. Also assume
that the manifold M and the isotropy group K are compact. Then either
G or Γ are not unimodular. Essentially, we shall use the modular functions
of these Lie groups to construct the form ω.

The contents of the paper are as follows. Section 2 contains preliminar-
ies about homogeneous spaces and unimodular groups, mainly in order to
fix our notations. Section 3 is about the basic definition and properties
of transversely homogeneous foliations. The main result is Blumenthal’s
structure theorem, but we state it without assuming that the action of the
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Lie group G on the manifold N = G/K is effective. This will allow us to
do later some explicit constructions using the universal covering N̂ of N .
We also introduce the so-called Blumenthal’s fiber bundle, and we discuss
the basic notions of Riemannian foliations.
Section 4 is devoted to the relationships between the relative Lie algebra

cohomology of the pair (G,K), De Rham cohomology of invariant forms
on N = G/K and the base-like cohomology of the foliation F , including
Poincaré duality. The main technical result is the injectivity result in The-
orem 4.19. Then we prove the main Theorem 1.2 and we give an example
with G = SL(n,R).

In the first part of the paper we do not assume that the group G is con-
nected. But the results are limited to transversely homogeneous foliations
where the developing map has connected fibers.
In order to go further, we introduce in Section 5 what we call the “ex-

tended group”. It is the smallest group containing G such that the origi-
nal N -transversely homogeneous foliation can be given a structure of N̂ -
transversely homogeneous foliation. This construction is less restrictive
than a similar one in Blumenthal’s paper [3], where he considers the whole
group of isometries ofN . We also need to reformulate Blumenthal results [3,
Theorem 3.ii)] about the closure L of each leaf L, in such a way that the fo-
liation F , when restricted to L, is also a transversely homogeneous foliation
modeled by a homogeneous space where the group that acts transitively is
a subgroup of the extended group.
By applying the results of the first part of the paper to this new foliated

structure, we are able to prove in all generality the characterization of
unimodular foliations (Theorem 5.17) and Theorem 1.3 cited above. These
results generalize analogous results for Lie foliations that we announced
in [17].

Remark 1.4. — About notation: in the first part of the paper the Lie
group G may not be connected. In the second part, we denote by G0 a
connected Lie group, while G will be an “extended” group to which the
results of the first part apply.

2. Preliminaries

In order to fix our notations, we recall several previous results about Lie
groups and homogeneous spaces.
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2.1. Homogeneous spaces

Let G be a Lie group, which is not supposed to be neither connected
nor simply connected. Assume that G acts transitively on the connected
manifold N . Fix a base point o ∈ N , and denote by K the isotropy group
Go, so the map [g] ∈ G/K 7→ g · o ∈ N is a diffeomorphism of G-spaces.

Remark 2.1. — It can be proved that Ge, the connected component of
the identity, also acts transitively on N . However, in Section 3 we shall
need a non-connected Lie group with an additional condition that Ge does
not fulfill.

For g ∈ G we denote by λ(g) : N → N the left translation λ(g)(p) = g ·p.

Definition 2.2 ([22]). — The normal core of the action is the kernel,
denoted by Core(K), of the morphism λ : G→ Diff(N), that is,

Core(K) = {g ∈ G : λ(g) = id}.

Notice that the action of G on N is effective if and only if Core(K) = {e}.
We list here some properties of the normal core. The proof is easy.

Proposition 2.3. — The normal core Core(K) equals:
(1) the intersection

⋂
p∈N Gp of the isotropy subgroups.

(2) the intersection
⋂
g∈G gKg

−1, of the conjugate subgroups.
(3) the set {k ∈ K : gkg−1 ∈ K ∀ g ∈ G}.

It follows that Core(K) is the largest subgroup of K which is normal in
G. We denote by G] = G/Core(K) the quotient group.

Proposition 2.4. — The induced action of G] on N is effective, with
isotropy K] = K/Core(K). Hence N is diffeomorphic to G]/K].

2.2. Unimodular groups

Let g be the Lie algebra of the Lie group G.

Definition 2.5. — The Lie algebra g is unimodular if trace adX = 0
for all X ∈ g.

Every Lie group G admits a non-zero left invariant measure µ, which
is called a Haar measure. It is unique up to a positive factor. See for in-
stance [9].

TOME 71 (2021), FASCICULE 2
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Definition 2.6. — The modular function of G is the Lie group mor-
phism mG : G→ (R+, · ) given by µ(Eg) = mG(g)µ(E) for every Borel set
E ⊂ G.

We say that the group G is unimodular if mG ≡ 1. Equivalently, the
Haar measure is bi-invariant.

Example 2.7. — Every discrete (or abelian, or compact) Lie group is
unimodular.

When dimG > 1, Definition 2.6 is equivalent to the following one:

Definition 2.8. — The modular function is given by

mG(g) = |det AdG(g)|.

We introduce a new definition, that we shall need later as an hypothesis.

Definition 2.9. — The Lie group G is strongly unimodular if

det AdG(g) = 1, for all g ∈ G.

Obviously, any connected unimodular Lie group is strongly unimodular.

Proposition 2.10.
(1) The Lie algebra g is unimodular if and only if the connected com-

ponent Ge of the identity is unimodular.
(2) If the Lie group G is unimodular then Ge is unimodular.

Example 2.11. — The converse is not true when G is not connected. For
instance, for a fixed λ ∈ (0,∞), consider the subgroup of SL(2,R) defined as

G =
{[
λn t

0 λ−n

]
: n ∈ Z, t ∈ R

}
.

The modular function is mG(n, t) = λ2n, so, in general, the Lie group G is
not unimodular. However, its connected component Ge = R is unimodular.

Proposition 2.12. — For a covering p : G → G′ of Lie groups (that
is, a surjective Lie group morphism with discrete kernel), we have

det AdG(g) = det AdG′(p(g)), ∀ g ∈ G.

3. Transversely homogeneous foliations

In this section we give the fundamental definitions and results about
transversely homogeneous foliations. The main “structure theorem” 3.2 is
due to Blumenthal [3], which stated it when the action of G on N is effec-
tive.
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3.1. Structure theorem

Let N = G/K be a connected G-homogeneous space (the Lie group may
not be connected) and let (M,F) be a foliated differentiable manifold.

Definition 3.1. — The foliation F on M is transversely homogeneous
with transverse modelN if it is defined by a family of submersions fα : Uα⊂
M → N , which satisfy:

(1) {Uα} is an open covering of M ;
(2) if Uα ∩ Uβ 6= ∅ then fα = λ(gαβ) ◦ fβ on f−1

α (Uα ∩ Uβ), for some
gαβ ∈ G.

Theorem 3.2 (Structure theorem [3]). — Let F be a transversely ho-
mogeneous foliation on the manifold M . There exists a regular covering
p : M̃ →M such that

(1) the automorphism group Aut(p) of the covering is isomorphic to a
subgroup Γ of G] = G/Core(K);

(2) the lifted foliation F̃ = p∗F is the simple foliation f∗pt associated
to some submersion f : M̃ → N ;

(3) the submersion f is equivariant by the isomorphism h : Aut(p) ∼= Γ,
that is, f(γ · x̃) = h(γ)f(x̃), for all x̃ ∈ M̃ and all γ ∈ Aut(p).

Conversely, if F is a foliation onM for which there exists a regular covering
satisfying the three properties above, then F is a transversely homogeneous
foliation.

The group Γ and the submersion f are called the holonomy group and
the developing map of the foliation, respectively.

Remark 3.3. — Sometimes, a larger covering than M̃ will be considered,
for instance the universal covering. If p̃ : M̂ → M̃ is a regular covering,
then the composition f ◦ p̃ : M̂ → N is equivariant by the epimorphism

Aut(p ◦ p̃)→ Aut(p) ∼= Γ ⊂ G].

Conversely, if there exist a covering p̂ : M̂→M , a morphism ĥ : Aut(p̂)→
G], and a ĥ-equivariant submersion f̂ : M̂ → N , then, for the covering
p : M̃ → M associated to the kernel of ĥ there is an induced submersion
f : M̃ → N , which is invariant by the induced isomorphism Aut p ∼= im ĥ =
Γ ⊂ G].
On the other hand, if the developing map f̂ : M̂ → N has connected

fibers then f : M̃ → N will have connected fibers too. Analogously, if the
fibers of f̂ have a finite number of connected components then so has f .

TOME 71 (2021), FASCICULE 2
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Example 3.4. — A Lie foliation [16] is a transversely homogeneous foli-
ation with model N = G a Lie group; that is, the subgroup K is trivial.
The structure theorem for Lie foliations was proved by Fedida [10].

3.2. The Blumenthal bundle

Blumenthal [3, §3] introduced a principal bundle associated to each trans-
versely homogeneous foliation F (for an effective action). El Kacimi, Guasp
and Nicolau [7] studied this fiber bundle for a type of foliations where that
bundle is trivial.
Taking into account Proposition 2.4, we consider the pullback of the

canonical projection π] : G] → N = G]/K] by the developing map f : M̃ →
N . That is,

f∗(G]) = {(x̃, g) ∈ M̃ ×G] : f(x̃) = π](g)}.

Let ρ : f∗(G]) → M̃ and f : f∗(G]) → G] be the maps induced by the
projections. We have

π] ◦ f = f ◦ ρ.

Proposition 3.5.

(1) The action of Aut p
h∼= Γ on f∗(G]), defined by

γ · (x̃, g) = (γ · x̃, h(γ)g)

is free, properly discontinuous and transitive on the fibers.
(2) As a consequence, the projection

τ : f∗(G])→ Γ\f∗(G])

onto the orbit space is a regular covering, with deck group Γ.
(3) Moreover the map ρ : f∗(G])→ M̃ is equivariant.
(4) The map ρ : Γ\f∗(G]) → M is a principal bundle with structure

group K].

We shall call ρ the Blumenthal bundle of the foliation.

Remark 3.6. — As pointed out by Blumenthal, the lifted foliation ρ ∗(F)
on Γ\f∗(G]) equals the projection, by the covering map τ , of the folia-
tion f∗(F0) on f∗(G]), where F0 is the foliation on the Lie group G] by
(the connected components of) the cosets of the subgroup K]. We have
codim f∗(F0) = codimF = dimG/K.
Notice that there is another foliation on the total space Γ\f∗(G]), namely

the projection by τ of f∗pt. Its codimension equals dimG, so its dimension
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equals dimF . It is a Lie foliation, whose associated transversely homoge-
neous foliation is ρ ∗(F).

3.3. Riemannian foliations

In this paragraph we assume that the normal core K] is compact. This
assumption has important consequences. First, there exists a Riemannian
metric onN which isG]-invariant. It follows that there exists a metric onM
which is a bundle-like metric for the foliation F , that is, F is a Riemannian
foliation (see for instance the proof of Theorem 4.1. in [3]). That metric on
M lifts to a Γ-invariant metric on the covering M̃ , which is a bundle-like
metric for the lifted foliation F̃ . By construction of the metrics above it
follows that the developing map p : M̃ →M is a Riemannian submersion.
Then Hermann’s Theorem 1 in [14] for Riemannian submersions between
complete manifolds applies if M is compact.

Proposition 3.7. — If M and K] are compact, then the developing
submersion f : M̃ → N is a locally trivial bundle (in particular, the map
is surjective).

Proposition 3.8. — If the manifold M and the group K] are both
compact, then

(1) the total space Γ\f∗(G]) of the Blumenthal bundle is compact;
(2) the quotient manifoldW = Γ\G] of the Lie group G] by the closure

Γ of the holonomy group Γ is compact.

Proof.
(1). — If the fiber bundle ρ has compact fibers, then it is a proper map.
(2). — The hypotheses imply that the developing map f = π ◦ f is a

locally trivial bundle (see Proposition 3.7 below), hence it is a surjective
map. This implies the surjectiveness of f : f∗(G])→ G]. Define

ϕ : Γ\f∗G] →W = Γ\G],

by
ϕ(x) = [f(x̃)],

where x̃ ∈ f∗(G]) verifies τ(x̃) = x. This map is well defined and continu-
ous, and it is surjective by the surjectiveness of f . Then W is compact. �
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4. Cohomology

In this section we study the relationship between the De Rham invariant
cohomology of the homogeneous space N = G/K = G]/K] and the Lie
algebra cohomology of the reductive pair (g,K]), including Poincaré du-
ality. We will follow Section VII.9 of Knapp’s book [15] and Hazewinkel’s
paper [12], with some slight changes.

4.1. Relative Lie algebra cohomology

As it is well known, when the Lie algebra g is unimodular its cohomology
verifies the Poincaré duality Hr(g;R) ∼= Hn−r(g;R), for n = dim g. In our
context we need a much more general result about relative cohomology. For
the sake of completeness we include the basic definitions and results but
we will skip the details of the proofs.

4.1.1. Reductive pairs

We denote by g and k the Lie algebras of G] and K], respectively.

Definition 4.1. — The pair (g,K]) is reductive if there exist a vector
subspace p ⊂ g such that g = k⊕ p and AdG]

(k)(p) ⊂ p, for all k ∈ K].

When G] is connected, the last condition is equivalent to [k, p] ⊂ p.

Proposition 4.2 ([6, Proposition 3.16]). — If the action of G] on N =
G]/K] is effective and by isometries, then the pair (g,K]) is reductive.

Definition 4.3 ([15, p. 334]). — The vector space V is a (g,K])-module
if there are representations ρ : g→ End(V ) and α : K] → GL(V ) verifying
the following conditions:

(1) the differentiated version of the K] action is the restriction to k of
the g action, that is, α∗ = ρ |k, or equivalently,

X · v = (d/dt)(exp(tX) · v)|t=0, ∀ X ∈ k, v ∈ V ;

(2) there is a compatibility condition

(AdG]
(k)(X)) · v = k · (X · (k−1 · v)), ∀ k ∈ K], X ∈ g, v ∈ V ;

(3) the vector space V is K]-finite, that is, K] · v generates a finite
dimensional subspace of V , for all v ∈ V ,
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where we denote

X · v = ρ(X)(v), k · v = α(k)(v), for k ∈ K], X ∈ g, v ∈ V.

Example 4.4. — The trivial module V = R is endowed with the actions
X · t = 0 and k · t = t.

Example 4.5. — If V is a (g,K])-module, the dual space V ∗ can be en-
dowed with the following actions:

(Xϕ)(v) = −ϕ(Xv),

(kϕ)(v) = ϕ(k−1v), for X ∈ g, k ∈ K], ϕ ∈ V ∗, v ∈ V.

Only the subspace (V ∗)K]
of K]-finite elements will be a (g,K])-module.

Example 4.6. — If V,W are (g,K])-modules then the tensor space V ⊗R
W is a (g,K])-module with the actions:

X(v ⊗ w) = Xv ⊗ w + v ⊗Xw,
k(v ⊗ w) = kv ⊗ kw, for X ∈ g, k ∈ K], v ∈ V,w ∈W.

4.1.2. The Hazewinkel module

Definition 4.7 ([12]). — Let V be a (g,K])-module. Assume that the
Lie algebra k is unimodular. The Hazewinkel module V tw is the space V
endowed with the actions:

X � v = X · v − trace adXv,

k � v = det Adp(k)−1k · v,

where we denote by Adp(k) the restriction of AdG(k), k ∈ k, to the vector
space p.

Remark 4.8. — The Hazewinkel module V tw is a (g,K])-module when
the trace of adX , for X ∈ k, equals that of its restriction to p. This is why
we need the trace of the restriction of adX to k to be zero, that is, the Lie
algebra k to be unimodular.

Proposition 4.9. — Let q be the dimension of p ∼= g/k. The module
V tw is isomorphic to the module V ⊗R (Λqp)∗.

The precise definition of the module structure on Λqp is given in [15,
Lemma 7.30].

TOME 71 (2021), FASCICULE 2
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4.1.3. Relative cohomology

Let V be a (g,K])-module. Assuming that the pair (g,K]) is reductive,
the exterior algebra Λrp, 0 6 r 6 q, inherits a structure of K]-module from
the adjoint action on p, so we can consider the cochain complex LK]

(Λrp, V )
of R-linear maps of K]-modules between Λrp and V .

Definition 4.10. — The relative cohomology groups with coefficients
in V ,

Hr(g,K];V )
are the cohomology groups of the complex LK]

(Λrp, V ).

The precise definition of these spaces and the differential of the complex
can be found in [15, p. 395–396].

Example 4.11. — For r = 0, the space LK]
(Λ0p, V ) is isomorphic to the

K]-invariant subspace

V K] = {v ∈ V : k · v = v ∀ k ∈ K]}

and we define (δv)(X) = X · v.

Example 4.12. — H0(g,K];V ) equals V K],p, the space of elements of V
which are invariant by the actions of K] and p.

Analogously, we can consider homology.

Definition 4.13. — The relative homology groupsHr(g,K];V ) are the
homology groups of the chain complex Λrp⊗K]

V .

The differential ∂ of this complex is defined in [15, p. 394–395].

Example 4.14. — For r = 1 we have ∂(X⊗v) = −X ·v. Also, Λ0⊗K]
V =

V K] , the space of K]-invariant vectors.

4.1.4. Poincaré duality

Theorem 4.15 (Poincaré duality, [15, Theorem 7.31]). — If the pair
(g,K]) is reductive and k is unimodular (in particular, if K] is compact)
then

(1) Hr(g,K];V c) ∼= Hr(g,K];V )∗,
(2) Hr(g,K];V ) ∼= Hq−r(g,K];V tw),

for 0 6 r 6 q = dim p, where V c = (V ∗)K]
is the set of K]-finite elements

of the dual space and V tw is the Hazewinkel module.
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Sketch of the proof. — Taking into account the natural isomorphism of
complexes

F : (Λrp⊗K]
V )∗ ∼= LK]

(Λrp, V c)
given by F (a⊗ v) = F (a)(v), we have (1).
On the other hand, if ε0 is a generator of Λqp ∼= R we consider the

isomorphism of complexes

λ : Λrp⊗K]
V tw ∼= LK]

(Λq−rp, V )

given by λ(α⊗ v)(β) = ε0(α ∧ β)v and we have (2). �

Corollary 4.16. — Taking V = R with the trivial (g,K])-module
structure, we have

Hq(g,K];R)∗ = H0(g,K]; (Rtw)∗),

where q = dimN .

Finally, we need the following Lemma.

Lemma 4.17. — Assume that K] is unimodular. If G] and K] are
strongly unimodular, then trace ad(X) = 0 for all X ∈ p and det Adp(k) =
1 for all k ∈ K]. The converse is true when G] is connected.

Proof. — Since G] is unimodular, its Lie algebra is g unimodular too,
hence trace ad(X) = 0 for all X ∈ g.
On the other hand, the condition AdG]

(k)(p) ⊂ p means that the matrix
associated to AdG]

(k) has the form [ ∗ 0
0 ∗ ], so

(4.1) det AdG]
(k) = det Adk(k) · det Adp(k) ∀ k ∈ K.

But det AdG]
(k) = 1 and det Adk(k) = 1, for all k ∈ K], by hypothesis,

and the result follows. �

With all that machinery we can prove the following result.

Theorem 4.18. — Let the pair (g,K]) be reductive. If the groups G]
and K] are strongly unimodular then

H0(g,K]; (Rtw)∗) 6= 0.

Conversely, assume thatK] is unimodular. If G] is connected, the condition
H0(g,K]; (Rtw)∗) 6= 0 implies that G] and K] are strongly unimodular.

Proof. — Accordingly to Example 4.12, the elements ofH0(g,K]; (Rtw)∗)
will be those ϕ ∈ (Rtw)∗ which are invariant by the action of K] and by
the action of p. Let us see what that means:
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(1) We consider on p the structure dual to that of Hazewinkel. Then

ϕ(X · v) = trace ad(X)ϕ(v), ∀ X ∈ p, v ∈ R.

But the action of p on R is trivial, so ϕ(X · v) = ϕ(0) = 0. Hence,
an element ϕ 6= 0 is invariant if and only if trace ad(X) = 0 for all
X ∈ p, so all the elements of (Rtw)∗ are invariant for the action of
p.

(2) On the other hand, that ϕ is invariant by the action of K] means
that

k ·t ϕ = det Adp(k)ϕ(k−1 · v),
for all k ∈ K]. But the action of K] on R being trivial, we have
ϕ(k−1 ·v) = ϕ(v), so ϕ 6= 0 is invariant if and only if det Adp(k) = 1
for all k ∈ K]. Again, all the elements of (Rtw)∗ will be invariant
by the action of K].

Summarizing, either H0(g,K; (Rtw)∗) = 0 or H0(g,K; (Rtw)∗) = R∗ ∼= R,
and this can happen if and only if trace ad(X) = 0 for all X ∈ p and
det Adp(k) = 1 for all k ∈ K]. The result then follows from Lemma 4.17. �

4.2. De Rham cohomology

Let N = G]/K] be a connected homogeneous space and let Γ ⊂ G] be
a subgroup. We shall denote by HΓ(N) the cohomology of the De Rham
complex Ω•Γ(N) of differential forms on N which are Γ-invariant. If Γ is the
closure of Γ in G] then HΓ(N) = HΓ(N).
Our main result in this section is the following one.

Theorem 4.19. — Let i∗ : HG]
(N) → HΓ(N) be the morphism in-

duced in cohomology by the inclusion ΩG]
(N) ⊂ ΩΓ(N). If the manifold

W = Γ\G] is compact and there exists a volume form on W which is right
invariant by the action of G], then i∗ is injective.

Proof. — It is enough to define a morphism of complexes r : ΩΓ(N) →
ΩG]

(N) such that r ◦ i = id. Consider the map λ : G → Diff(N) given by
λ(g)(p) = g · p and define, for each Γ-invariant differential form α of degree
s on N , that is, α ∈ ΩsΓ(N), the following map:

φα : x = [g] ∈W = Γ\G] 7→ x∗α = λ(g)∗α ∈ Ωs(N).

It is well-defined because, if h ∈ Γ then

λ(hg)∗α = (λ(h) ◦ λ(g))∗α = λ(g)∗λ(h)∗α = λ(g)∗α.
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We denote by

r(α) =
∫
W

(x∗α)ω(x)

the following r-form on N :

r(α)[g](X1([g]), . . . , Xs([g])) =
∫
W

(x∗α)[g](X1([g]), . . . , Xs([g]))ω(x),

where ω is the invariant volume form, that we can assume that verifies∫
W

ω(x) = 1.

Now it is routine to check the following two properties:
(1) r(α) is G]-invariant
(2) If α is G]-invariant then r(α) = α.

Finally, r is a morphism of complexes by the property
(3) r(dα) = dr(α),

which can be proved taken into account the following result:

Theorem 4.20 (Derivation under the integral sign). — Let W and N
be two smooth manifolds. Assume thatW is compact and orientable. Then,
for each smooth function g : W ×N → R and each smooth vector field X
on N , we have ∫

W

Xg(x, p) · ω(x) = X

∫
W

g(x, p) · ω(x),

where the derivation X is relative to the variable p. �

As a Corollary we shall obtain Theorem 1.2 about the non-nullity of the
top cohomology group, that we stated in the Introduction.

Proof of Theorem 1.2. — First, assume that dim Γ > 0.
Since G] is strongly unimodular we have det AdG]

(γ) = 1 for all γ ∈ Γ.
However, Γ may not be connected, so it may happen that det AdΓ(γ) = −1
for some γ.
If det AdΓ(γ) = 1 = det AdG]

(γ) for all γ ∈ Γ, we know from [13, Propo-
sition 1.6] that there exists on W = Γ\G] an invariant volume form, which
implies, by Theorem 4.19 that the morphism HG]

(N) → HΓ(N) is injec-
tive.
On the other hand, if det AdΓ(γ) = −1 for some γ, we can consider,

as we did in [17], the subgroup H2 = {γ ∈ Γ : det AdΓ(γ) > 0} and the
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manifold W2 = H2\G]. In this way, W2 is compact and det AdH2(h) = 1 =
det AdG]

(h) for all h ∈ H2. Hence, the morphism HG]
(N) → HH2(N) is

injective, by Theorem 4.19. Now, we can consider the composition

ΩG]
(N)→ ΩΓ(N)→ ΩH2(N)

and the induced morphism HG]
(N)→ HΓ(N) will be injective too.

In both cases, taking into account that Hq
G]

(N) 6= 0, we have Hq

Γ
(G]) 6=

0, as stated.
When Γ is a discrete group, we can argue in the following way: since G] is

unimodular, it admits a bi-invariant volume form ω. Since G] →W = Γ\G]
is a covering, ω induces a form ω onW which is G]-invariant. Finally, since
W is compact, Stokes theorem implies that ω is a volume form. �

We now recall how to compute the cohomology of the complex of invari-
ant forms on the homogeneous space N = G]/K]. If o = [e] ∈ N we denote
p = g/k = ToN and Adp(k), with k ∈ K], denotes the linear endomorphism
of p = g/k induced by AdG(k) : g→ g, which is well defined because k is a
Lie subalgebra.

Proposition 4.21.
(1) The complex ΩG]

(N) of G]-invariant forms is isomorphic to the
complex (Λrp)∗K]

of alternate multilinear forms pr → R which are
Adp(K])-invariant [11, p. 458];

(2) If the pair (g,K]) is reductive, then (Λrp)∗K]
is isomorphic to the

complex LK]
(Λrp,R).

Corollary 4.22. — Let the pair (g,K]) be reductive. Then HG]
(N)

is isomorphic to H(g,K];R).

Then, from Corollary 4.16, Theorem 4.18 and Proposition 4.21, we are
able to prove the following result.

Proposition 4.23. — If the pair (g,K]) is reductive and the groups
G] and K] are strongly unimodular, then Hq

G]
(N) 6= 0, where q = dimN .

In fact, Hq
G]

(N) = R. Conversely, when G] is connected, the condition
Hq
G]

(N) 6= 0 implies that G] and K] are strongly unimodular.

4.3. Unimodular foliations

We apply the results of the last paragraph to the transversely homoge-
neous foliation F on the manifold M .
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Definition 4.24 ([20]). — The differential form α on M is base-like
for the foliation F if it is invariant and horizontal, that is, iXα = 0 and
iXdα = 0 for any vector field X tangent to the foliation.

We shall denote by (Ω•(M),d) the De Rham complex of differential forms
on M , and by Ω•(M/F) the subcomplex of base-like forms. The base-like
or basic cohomology of the foliation F is the cohomology H(M/F) of this
subcomplex.

Definition 4.25. — The foliation F is unimodular if Hq(M/F) 6= 0,
for q = dimN = codimF .

The following result is a direct consequence of the structure theorem 3.2.
We shall need one previous Lemma:

Lemma 4.26. — Let f : M̃ → N be a submersion with connected fibers
and let F̃ = f∗pt be the simple foliation defined by f . Then H(M̃/F̃) ∼=
H(N).

The following Theorem was first proved by Blumenthal in [4] under some
more restrictive hypothesis.

Theorem 4.27. — Let F be a N -transversely homogeneous foliation
on the manifold M , with N connected. If there is a developing map f

which is surjective and with connected fibers then the base-like cohomology
H(M/F) is isomorphic to HΓ(N).

Proof. — Let h : Aut(p) ∼= Γ ⊂ G] be the isomorphism given by the
structure theorem 3.2. The covering map p induces an isomorphism p∗ :
Ω•(M/F) → Ω•inv(M̃/F̃) between the base-like forms for (M,F) and the
base-like forms for (M̃, F̃) which are invariant by the action of Aut(p).

Now it is enough to check that f∗ : Hr
Γ(N)→ Hr

inv(M̃/F̃) is an isomor-
phism. �

Theorem 1.2 gives sufficient conditions for the foliation F to be unimod-
ular. For a discussion on the surjectiveness and connectedness of the fibers
of the developing map see Remark 3.3 and Proposition 3.7.

Theorem 4.28. — Let F be an N -transversely homogeneous foliation
on the compact manifold M , which admits a developing map with con-
nected fibers. We assume that N = G]/K] is connected. If G] is strongly
unimodular, K] is compact and strongly unimodular, and Γ is unimodular,
then the foliation F is unimodular.

Proof. — Since M and K] are compact, Proposition 3.7 states that the
developing map f is a (surjective) locally trivial bundle. Since the fibers
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of f are connected, Theorem 4.27 ensures that H(M/F) ∼= HΓ(N). On
the other hand, the pair (g,K]) is reductive, by Proposition 4.2. Finally,
since G] and K] are strongly unimodular, we know that Hq

G]
(N) 6= 0,

q = codimF , by Proposition 4.23.
Now, since M and K] are compact, Proposition 3.8(2) says that W =

Γ\G] is compact, so we have the hypotheses to apply Theorem 1.2 and to
obtain that

H(M/F) = HΓ(N) = HΓ(N) 6= 0. �

4.4. Example

In this subsection we illustrate some of the results of the paper with an
Example.

Let us consider the transitive action of G0 = SL(2,R) on the complex
upper half-plane N = H, given by[

x y

z t

]
· ω = xω + y

zω + t
.

The isotropy of ω = i is the subgroup K0 = SO(2), which is compact and
connected. The normal core is the only proper normal subgroup of G0,
that is, is {±I}, so G0] = PSL(2,R) and K0] = SO(2)/{±I}. Let Γ0 ⊂ G0]
be a discrete cocompact subgroup. We have a transversely homogeneous
foliation on the compact manifold M = Γ0]\G0], whose holonomy is Γ0
and whose developing map f : G0] → N is given by f(A) = A · i.
If K0] ∩ Γ0 = {I} then the manifold M is the unitary tangent bundle

over Γ0\H and the foliation is defined as a fiber bundle. If K0] ∩ Γ0 6= {I}
then the leaves have holonomy and the foliation is defined as a bundle over
a Satake manifold [19, p. 89].
We now check the hypotheses of Theorem 4.28, in order to show that the

foliation is unimodular.
The fibers of f are connected. The isotropy is compact, so there is an

invariant metric on N , namely, PSL(2,R) is the group of orientation pre-
serving isometries of the hyperbolic metric (dx2 + dy2)/y2. The manifold
W = Γ0\G0] is compact. The group K0] is (strongly) unimodular, because
it is compact. The subgroup Γ0 is discrete, hence unimodular. Finally, the
Lie group PSL(2,R) is unimodular too, because its Lie algebra is unimodu-
lar: namely, it admits a basis X,Y, Z subject to the relations [X,Y ] = 2Y ;
[X,Z] = −2Z and [Y,Z] = X.

This example can be easily generalized to SL(n,R).
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5. Non-connected fibers

We study now the case when the fibers of the developing map are not
connected. We start with a connected Lie group G0 which acts transitively
on N , but we do not assume the action to be effective. This will allow us
to model the foliation on the universal covering N̂ , where the developing
map will have connected fibers.

5.1. Auxiliary constructions

Let N = G0/K0 be a homogeneous space, where G0 is connected (we do
not assume G0 to be simply connected). If π : Ĝ0 → G0 is the universal
covering of G0, we have

N = Ĝ0/π
−1(K0).

For the sake of simplicity, we shall denote K̂0 = π−1(K0), even if this group
may not be the universal covering of K0.
We maintain our notations Core(K0) (respectively Core(K̂0)) for the

normal core of the action of G0 (resp. Ĝ0) on N .

Proposition 5.1. — We have

(Ĝ0)] = Ĝ0/Core(K̂0) ∼= G0/Core(K0) = (G0)],(5.1)

(K̂0)] = K̂0/Core(K̂0) ∼= K0/Core(K0) = (K0)].(5.2)

Proposition 5.2. — Let (K̂0)e denote the connected component of the
identity of the subgroup K̂0. Then, the universal covering of N is N̂ =
Ĝ0/(K̂0)e, and the fundamental group π1(N) is isomorphic to K̂0/(K̂0)e.

In order to get an equivariant map onto the homogeneous space N̂ , we
need to enlarge the group G0] = G0/Core(K0), which acts effectively on
N̂ , by the group of deck transformations of the covering πN : N̂ → N .
More precisely we have the following technical definition.

Definition 5.3. — Let G denote the Lie group

G := Ĝ0/Core((K̂0)e)× K̂0/(K̂0)e,

which we call the extended group.

This extended group acts transitively on N̂ = Ĝ0/(K̂0)e, where the ac-
tion is given by

([g], [k]) · [h] = [ghk−1], g, h ∈ Ĝ0, k ∈ K̂0.
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Proposition 5.4.
(1) The isotropy of the action at the point [e] ∈ N̂ is the subgroup

i(K̂0) = {([k], [k]) : k ∈ K̂0},

which is isomorphic to

K := K̂0/Core((K̂0)e).

(2) The normal core CoreG(K) of this action is

i(Core(K̂0)) = {([k], [k]) : k ∈ Core(K̂0)},

which is isomorphic to the abelian group

Core(K̂0)/Core((K̂0)e).

(3) The Lie group G] = G/Core(K) acts transitively and effectively on
N̂ , with isotropy

K] = K/Core(K) ∼= K̂0] ∼= K0].

Remark 5.5. — Notice that the Lie group G] may not be connected.
In fact, π0(G]) = π0(K]), where K] = K/Core(K), and the connected
component of the identity of G] is diffeomorphic to Ĝ0/Core((K̂0)e).

Lemma 5.6. — The projection

(5.3) q : Ĝ0/Core((K̂0)e)→ G0] = Ĝ0/Core(K̂0)

is a covering of Lie groups, with automorphism group the abelian group
Core(K̂0)/Core((K̂0)e).

Proposition 5.7. — The Lie group G] is a (maybe non-connected)
covering of the connected Lie group G0]. More precisely, G] is an extension
of G0] by K̂0/(K̂0)e.

Proof. — Let us denote by i(Core(K̂0)) the subgroup of the extended
group G (Definition 5.3) given by

{([k], [k]) ∈ G : k ∈ Core(K̂0)}.

Then
G] = G/i(Core(K̂0)).

Consider the morphism

j : K̂0/(K̂0)e → G],

given by
j([k]) = [([e], [k])].
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This morphism is injective because [([e], [k])] = [([e], [e])] would imply
that ([e], [k]) ∈ i(Core(K̂0)), hence [k] = [e] ∈ K̂0/(K̂0)e.

Now, the projection

E : G] = G/i(Core(K̂0))→ G0] = Ĝ0/Core(K̂0)

will be defined as

(5.4) E([([g], [k])]) = q([g]),

where q is the morphism (5.3).
The projection E is well defined, because if ([gk′], [kk′]), with k′ ∈

Core(K̂0), is another representative of the class [([g], [k])] in G], then
q([gk′]) = q([g]). Trivially, the map E is surjective.
It remains to show that

K̂0/(K̂0)e
j→ G]

E→ Ĝ0/Core(K̂0)

is an exact sequence, that is, kerE = im j.
First,

[([g], [k])] ∈ kerE ⇐⇒ q([g]) = [e] ⇐⇒ g ∈ Core(K̂0).

Then, the class [g] ∈ Ĝ0/Core((K̂0)e) belongs to Core(K̂0)/Core((K̂0)e)
and

[([g], [k])] = [([e], [kg−1]) · ([g], [g])] = j([kg−1]),

because ([g], [g]) ∈ i(Core(K̂0)).
Conversely,

Ej([k]) = E([([e], [k])]) = q([e]) = [e]. �

Corollary 5.8. — The Lie group G] is strongly unimodular if and
only if G0] is unimodular.

Proof. — Immediate from Proposition 2.12. �

5.2. Unimodular foliations again

Our main result of this paragraph is analogous to Theorem 4.28, but
now we do not ask the fibers of the developing map to be connected. In
contrast, we need that the Lie group G0 acting on N be connected.
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5.2.1. Transverse model

Let F be an N -transversely homogenous foliations on the compact mani-
foldM , with transverse model N = G0/K0, and holonomy group Γ0 ⊂ G0].

It was proved by Blumenthal in [3, Theorem 4.1] that the universal cov-
ering M̂ of M fibers over the universal covering of N̂ , the fibers being the
leaves of the lifted foliation. Our next results refine this idea.
Let F̃ = p∗F be the lifted foliation of F to the covering M̃ given by the

structure theorem 3.2. Remember that F̃ is the simple foliation defined by
the developing map f : M̃ → N . Let N̂ be the universal covering of N .
This manifold N̂ is a G]-homogeneous space, where G] is the extension of
G0] given in Proposition 5.7.

Lemma 5.9. — The foliation F̃ on M̃ is a transversely homogeneous
foliation with transverse model N̂ . More precisely, if M̂ is the universal
covering of M , the map f lifts to a submersion f̂ : M̂ → N̂ , which is a
locally trivial bundle with connected fibers when K0 is compact.

Moreover, the holonomy subgroup Γ̃0 of F̃ is the image of the morphism

π1(f) : π1(M̃)→ π1(N) ∼= K̂0/(K̂0)e ⊂ G].

Proof. — The existence of f̂ is granted by the homotopy lifting property
of the covering π, because M̂ and N̂ are simply connected. Let us check
that f̂ is equivariant for the morphism f∗ = π1(f):
If γ ∈ Aut p = π1(M̃) and x̂ ∈ M̂ , denote x̃ = p(x̂) ∈ M̃ . The loop

γ with base point x̃ lifts to a path γ̂ in M̂ with initial point x̂ and end
point γ̂ · x̂ := γ̂(1). On the other hand, we have fixed base-points x0 ∈M ,
x̃0 ∈ M̃ and x̂0. For any path δ̂ joining x̂0 with x̂ we shall have the image
path α = (f ◦ p)(δ̂) in N joining (f ◦ p)(x̂0) with (f ◦ p)(x̂). By lifting
this path to N̂ we shall have a path α̂ with initial point f̂(x̂0) = n̂0 (a
base-point previously fixed) and end point f̂(x̂) := α̂(1).

Now we compute f̂(γx̂). We take the path δ̂ ∗ γ̂ in M̂ , joining x̂0 to γx̂.
Passing to N through f ◦ p we obtain a path

β = (f ◦ p)(δ̂ ∗ γ̂) = α ∗ f∗(γ),

which lifts to β̂ = α̂ ∗ f̂∗(γ). In this way,

f̂(γx̂) = β̂(1) = f̂∗(γ)(1) = f∗(γ) · f̂(x̂).

On the other hand, when K0 is compact, an argument similar to that of
Proposition 3.7 proves that f̂ is a locally trivial fiber bundle. The connect-
edness of the fibers follows from the homotopy long exact sequence. �
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Consider the diagram

(5.5)

M̂
f̂ //

p̃
��

N̂

π

��
M̃

f //

p

��

N

M

where p̂ = p◦p̃ is the universal covering ofM . Remember that the holonomy
of F as an N -transversely homogeneous foliation is denoted by Γ0 ⊂ G0]; it
is the image of a morphism h : π1(M)→ G0] such that f is h-equivariant.
We need to find a morphism ĥ : π1(M) → G] making f̂ a ĥ-equivariant
map.
Notice that, for a given γ ∈ π1(M) = Aut(p ◦ p̃) and x̂ ∈ M̂ , we have

(we denote x̃ = p̃(x̂), x = p̂(x̂) = p(x̃) and γ ∈ Aut(p))

π(f̂(γx̂)) = f(p̃(γx̂))(5.6)
= f(γx̃)
= h(γ) · f(x̃)
= h(γ) · f(p̃(x̂))

= h(γ) · π(f̂(x̂)).

But h(γ) ∈ G0] = Ĝ0] does not act directly on N̂ , so we shall use an
arbitrary global section s of the covering q given in (5.3). We can assume
that s([e]) = [e]. The section s may not be a group morphism, so we define

c : Ĝ0] × Ĝ0] → Core(K̂0)/Core((K̂0)e)

as

(5.7) c([g], [g′]) = s([g]) · s([g′]) · s([gg′])−1,

which satisfies the usual cocycle condition.
Remember from Proposition 5.1 that G0] = Ĝ0/Core(K̂0). We represent

the class of g ∈ Ĝ0 by [g], while we shall use the notation [g]] for the class
of g in the total space Ĝ0/Core((K̂0)e) of the covering q in (5.3). So, this
element [g]] acts on N̂ = Ĝ0/(K̂0)e.

Lemma 5.10. — For n̂ ∈ N̂ and [g] ∈ G0] we have

[g] · π(n̂) = π(s([g]) · n̂).
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Proof. — Consider the commutative diagram

N̂
λ̂([g]]) //

π

��

N̂

π

��
N

λ([g])
// N

where [g] = q([g]]). It follows for [g]] = s([g]) that

π(s([g]) · n̂) = (π ◦ λ̂(s([g]))(n̂)
= (λ([g]) ◦ π)(n̂)
= [g] · π(n̂). �

As a consequence, in (5.6) we shall have

π(f̂(γx̂)) = π(s(h(γ)) · f̂(x̂)).

That means that there exists ξ(γ, x̂) ∈ Aut(π) ∼= K̂0/(K̂0)e such that

(5.8) f̂(γx̂) = ξ(γ, x̂) · s(h(γ)) · f̂(x̂).

Lemma 5.11. — ξ only depends on γ.

Proof. — Since Aut(π) ∼= K̂0/(K̂0)e is a discrete group, it is enough to
prove that the map ξ(γ, · ) : M̂ → K̂0/(K̂0)e is continuous, because the
manifold M̂ is connected. But it is not hard to prove that ξ(γ, · ) is locally
constant, because f̂ : M̂ → N̂ maps trivializing open sets of the covering p̃
into trivializing open coverings of π. �

So we have a map ξ : π1(M)→ K̂0/(K̂0)e. But this map is not a group
morphism, because, for given γ1, γ2 ∈ π1(M), we have

ξ(γ1γ2) = ξ(γ1) · ξ(γ2) · c12,

where c12 = c(h(γ1), h(γ2)) ∈ Core(K̂0)/Core((K̂0)e), as in (5.7).
However, the map ĥ : π1(M)→ G] given by

(5.9) ĥ(γ) = [(s(h(γ)), ξ(γ))] ∈ G].

is a group morphism, as it is straightforward to check.
Moreover, the submersion f̂ is ĥ-equivariant. This gives the foliation F

on M a structure of N̂ -transversely homogeneous foliation.

Proposition 5.12. — The foliation F has a structure of N̂ -transversely
homogeneous foliation, when N̂ is considered as a G]-homogeneous space.
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5.2.2. Holonomy groups

We shall denote by Γ ⊂ G] the holonomy group of F when it is considered
as a N̂ -transversely homogeneous foliation. Remember that Γ0 ⊂ G0] is the
holonomy of the N -transversely homogeneous foliation F .

Lemma 5.13. — Let E : G] → G0] be the projection given in Proposi-
tion 5.7. Then the image of Γ is Γ0, that is, E(Γ) = Γ0.

Proof. — Since Γ0 = im h, with h : π1(M) → G0], the result follows
from equations (5.4) and (5.9), because for a given γ ∈ π1(M) we have

E([(s(h(γ)), ξ(γ))]) = q(s(h(γ))) = h(γ). �

We need two Lemmas, previous to the next important Proposition 5.16.

Lemma 5.14. — Let A ⊂ B ⊂ C three subgroups of a Lie group G,
such that A,C are closed in G, and the set C/A is finite. Then B is closed
in G.

Proof. — We choose representatives c1, . . . , cN ∈ C of the cosets in C/A.
Let {xn}n∈N be a sequence in B converging to some x ∈ G. Since each

xn belongs to some coset, there must be some c ∈ {c1, . . . , cN} which
appears an infinite number of times. Then there is a convergent subsequence
{xm}, with [xm] = [c], so xm = c · ym for some ym ∈ A. Notice that
c = xm · y−1

m ∈ B. Then we have

x = lim
m→∞

c · ym = c · lim
m→∞

ym.

Since A is closed in G, we have limm→∞ ym ∈ A ⊂ B, hence x ∈ B. �

Lemma 5.15. — Let G be a Lie group, and let B ⊂ A two subgroups
of G such that the set A/B is finite. Then the space A/B is finite too.

Proof. — We shall prove that there is a finite set a1, . . . , an ∈ A such
that each x ∈ A belongs to some aiB.
In fact, we shall take representatives a1, . . . , aN of each coset A/B. Then,

if x = limn→∞ xn, with xn ∈ A, since each [xn] determines a coset, there
must be some a ∈ {a1, . . . , aN} which appears an infinite number of times.
That means that there is a subsequence {xm} converging to x such that
[xm] = [a] for all m, that is, xm = a · bm, with bm ∈ B.
From

x = lim
m→∞

a · bm = a · lim
m→∞

bm,

it follows that a−1x ∈ B, hence x ∈ a ·B. �
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Proposition 5.16. — Assume that K0] is compact and that fibers of
the developing map f : M̃ → N have a finite number of connected compo-
nents. Then:

(1) The image of the closure of Γ in G] is the closure of Γ0 in G0],
that is, E(Γ) = Γ0. Analogously, E((Γ)e) = (Γ0)e.

(2) Γ is unimodular if and only if Γ0 is unimodular. Analogously, (Γ)e
is unimodular if and only if (Γ0)e is unimodular.

Proof.
(1). — Since K0] is compact, we know from Proposition 3.7 that the

developing map f : M̃ → N is a fibration. Denote by F its generic fiber,
and let Γ̃0 be the image of the holonomy morphism h̃ = π1(f) given in
Lemma 5.9. From the homotopy long exact sequence we have

(5.10) π0(F ) ≡ (K̂0/(K̂0)e)/Γ̃0.

Consider the covering E : G] → G0], given by

E([([g], [k])]) = q([g])

as in (5.4). We know from Lemma 5.13 that E(Γ) = Γ0, so

E−1(Γ0) = Γ · kerE.

Since the covering E restricts to a morphism Γ → Γ0, with kernel Γ̃0,
we have

(5.11) kerE/Γ̃0 ∼= E−1(Γ0)/Γ.

Hence, combining Equations (5.10) and (5.11) we have that

π0(F ) ∼= E−1(Γ0)/Γ

is a finite set. It follows from Lemma 5.15 that

E−1(Γ0)/Γ ∼= E−1(Γ0)/Γ

is finite too, and this implies that

(5.12) E(Γ) = Γ0,

as we shall check in the next paragraph. By dimension reasons, this will
imply that E((Γ)e) = (Γ0)e.
So, let us check (5.12). Let H = E−1(E(Γ)), the saturated of Γ. We have

Γ ⊂ H ⊂ E−1(Γ0), with E−1(Γ0)/Γ finite, so Lemma 5.14, states that H
is a closed subgroup of G], which means that E(Γ) is a closed subgroup of
G0].
(2). — It is immediate from part (1) and Proposition 2.12. �
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This will allow us to generalize Theorem 4.28 to foliations such that the
fibers of the developing map are not connected, but have a finite number
of components.

Theorem 5.17. — Let F be a N -transversely homogeneous foliation on
the compact manifold M , where N = G0/K0. Assume that the Lie group
G0 is connected and that the fibers of the developing map have a finite
number of connected components. Assume moreover that the Lie group
(K0)] is compact. If the Lie groups G0] and Γ0 are unimodular, and (K0)]
is strongly unimodular, then the foliation F is unimodular.

Proof. — We take the universal covering π : Ĝ0→G0 and K̂0 =π−1(K0).
By Proposition 5.1 we know that

(Ĝ0)] = Ĝ0/Core(K̂0) ∼= G0/Core(K0) = G0]

and that

(K̂0)] = K̂0/Core(K̂0) ∼= K0/Core(K0) = (K0)].

Since (K0)] is compact, the developing map f : M̃ → N , as well as its
lifting f̂ : M̂ → N̂ to the universal covering are locally trivial bundles. By
Proposition 5.12 we can consider that the foliation F onM models on N̂ =
G]/K], where G is the extended group given in Section 5.1, and the isotropy
K verifies that K]

∼= (K0)] by Proposition 5.4. The holonomy group of the
latter foliation was denoted by Γ ⊂ G]. Moreover, the developing map
f̂ : M̂ → N̂ has connected fibers, so we can apply Theorem 4.28, because:

(1) The Lie group K]
∼= (K0)] is compact, and strongly unimodular,

by hypothesis.
(2) The Lie groups G] and Γ are unimodular. The first one, by Propo-

sition 2.12, because G0] is unimodular, by hypothesis. On the other
hand, since Γ0 is unimodular it follows that Γ is unimodular, by
Proposition 5.16.

Hence, Theorem 4.28, ensures that the foliation F is unimodular. �

6. Non-unimodular foliations

In [3], Blumenthal studied the closures of the leaves of a transversely
homogeneous foliation on a compact manifold, assuming that the trans-
verse group acts effectively on N and that the isotropy group is compact.
This allowed him to prove that the foliation induced on each closure is
a transversely homogeneous foliation, thus generalizing the corresponding
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Molino’s [19] result for Lie foliations. In this setting, the holonomy group of
the induced foliation is contained in the group Iso(N̂), the complete group
of isometries of the universal covering N̂ of N , endowed with an invariant
metric.
The advantage of our construction in Section 5.1 is that it allows to give

an explicit definition of N̂ , without excluding the non-effective case, and
to prove that the holonomy group is contained in a much smaller group,
namely the extended group given in Definition 5.3, which can be computed
explicitly.
This will allow us to prove the Theorem 1.3 that we stated in the Intro-

duction, which is our main result in the second part of the paper, and that
generalizes an analogous result that we proved for Lie foliations in [17].

6.1. The closure of the leaves

We continue to study the N -transversely homogeneous foliation F on
the compact manifold M , where N = G0/K0. We assume that G0 is con-
nected and that the group (K0)] = K0/Core(K0) is compact. From Propo-
sition 3.7 we know that there exists a G0]-invariant metric on N̂ , and that
F is a Riemannian foliation. Thanks to Proposition 5.12 we can consider
F as a N̂ - transversely homogeneous foliation, where N̂ is effectively acted
by the Lie group G] given in Proposition 5.4. The isotropy of this action
is K0].
We shall denote by Γn ⊂ N̂ the orbit of the point n ∈ N̂ by the action

of Γ ⊂ G].

Lemma 6.1 ([3, Lemma 4.3]). — The closure Γn ⊂ N̂ of the orbit equals
Γn, the orbit of n by the action of the closure Γ of Γ.

Hence, Γn is a homogeneous space given by the transitive and effective
action of the Lie group Γ ⊂ G].

Remark 6.2. — Notice that Blumenthal considers the closure of Γ inside
the Lie group of isometries Iso(N̂), but the compactness of K0] ensures
that it equals the closure inside G], thanks to the following general result:
“Let N = G/K be a homogeneous space with K compact. Then G] maps
injectivelly into Iso(N), as a closed subgroup.” The proof is easy by using
that the projection g ∈ G 7→ λ(g)(o) ∈ G/K is a proper map.
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Proposition 6.3 ([3, Theorem 4.4.]). — The foliation induced by F on
the closure L of the leaf L is a transversely homogeneous foliation modeled
by the manifold N̂L = Γn, where n is the image by f̂ of any leaf (fiber) of
f̂ projecting onto L.

Blumenthal’s proof includes the formula

p−1(L) = (f̂)−1(Γn),

so this set is a saturated subset of M̂ for the fibration f̂ . From the structure
Theorem 3.2 we have a diagram

(6.1)
p−1(L)

f̂ //

p′

��

N̂L = Γn

L

Since all along the paper we have asked the transverse homogeneous
model to be connected, we need to refine the latter Proposition.

Lemma 6.4. — The connected component (N̂L)n of N̂L containing the
point n ∈ N̂ is diffeomorphic to the quotient of (Γ)e by some compact
subgroup.

We have the following general result:

Proposition 6.5. — If a Lie group G acts transitively on a manifold N ,
with isotropy K = Gp the isotropy at the point p ∈ N , then the connected
component Ge of the identity acts transitively on the connected component
Np of p ∈ N , with isotropy Ge ∩K.

Corollary 6.6. — The foliation induced by F on the closure L of any
leaf L is a (N̂L)n- transversely homogeneous foliation, where an interme-
diate closed Lie subgroup (Γ)e ⊂ Σ ⊂ Γ acts transitively and effectively
on (N̂L)n, with compact holonomy. Moreover, the developing map of this
foliation has connected fibers.

Before proving this result we need an elementary Lemma.

Lemma 6.7. — Let p : M̂ → M be the universal covering of the mani-
foldM , and let P be a path-connected component of p−1(L). Then, the re-
striction p′′ : P → L of p is a covering, whose automorphism group Aut(p′′)
is formed by the deck transformations γ ∈ Aut(p) such that γ(P ) = P .
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Proof of Corollary 6.6. — First, we have that f̂(P ) equals (Γn)n, the
connected component of Γn containing n. This follows from the fact that
f ′ is a surjective open map and that the fibers of f̂ are connected.
Taking into account Proposition 6.5, we have the following diagram

(6.2)
P

f̂ //

p′′

��

(Γe)n

L

This will endow F |L̄ with a structure of (Γ)en-transversely homogeneous
foliation, if we are able to prove that f̂ is equivariant for some morphism h′′

defined on Aut(p′′). Consider the group Σ of the elements g ∈ Γ such that
the action of g on Γn ⊂ N̂ sends the component (Γ)e n onto itself and is the
identity on the other components. Then the Lie group Σ acts transitively
and effectively on the manifold (Γ)e n. Moreover, since f̂ is h-equivariant,
from Lemma 6.7 it follows that the restriction of f̂ to P is equivariant for
the restriction of ĥ to h′′ : Aut(p′′)→ Σ. �

6.2. Proof of the main result

In this section we shall prove Theorem 1.3. The proof will be a con-
sequence of our previous study of the structure of the foliation and the
cohomological results we stated in Section 4, plus the following classic re-
sult.

Theorem 6.8 (Tischler Theorem [23]). — Let M be a compact differ-
entiable manifold admitting a non-singular closed 1-form. Then M fibers
over S1.

The latter result can be reformulated in terms of Lie foliations, by con-
sidering the codimension one foliation defined by the condition ω = 0.

Corollary 6.9. — Let M be a compact differentiable manifold en-
dowed with a Lie foliation modeled by the abelian Lie group R. Then M
fibers over S1.

We divide the proof of Theorem 1.3 in several separate Propositions.
First, we know, from Propositions 5.4 and 5.12, that F can be considered

as a transversely homogeneous foliation modeled by N̂ = G]/K], where
K]
∼= K0]. The holonomy group was denoted by Γ ⊂ G]. Remember that
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Γ0 ⊂ G0] is the holonomy group of F when seen as an N -transversely
homogeneous foliation.
Also, Theorem 5.17 guarantees that, since F is not unimodular by hy-

pothesis, then either G0] or Γ0 is not unimodular. Depending on this there
are different fibrations to consider.
Step 1. — We begin by assuming that G0] is not unimodular.

Proposition 6.10. — If G0] is not unimodular then M fibers over S1.

Proof. — We consider the modular functionm0 = mG0]
: G0] → (R+, · ),

as given in Definition 2.8.
Since G0] is connected, and it is not unimodular by hypothesis, the mor-

phism m0 is surjective. Moreover, since K0] is compact its image m0(K0])
is trivial.
So m0 passes to the quotient, and we can define a map

mN : N → R+, mN ([g]) = m0(g).

Take
f = logmN ◦ f : M̃ → R

and
h = logm0 ◦ h : π1(M)→ R,

where f and h are respectively the developing map and the holonomy
morphism of the foliation F .
The maps f and h give then the developing map and the holonomy

morphism of a Lie foliation on M (Example 3.4), once we have tested the
equivariance in Lemma 6.11. By applying Tischler’s theorem 6.9, this will
prove that M fibers over S1.
This ends the proof of Proposition 6.10. �

Lemma 6.11. — f is h-equivariant.

Proof. — First, we prove that, for any γ ∈ Γ0 and [g] ∈ N we have

mN (γ · [g]) = m0(γ) ·mN ([g]).

In fact,

mN (γ · [g]) = mN ([γg])
= m0(γg)
= m0(γ) ·m0(g)
= m0(γ) ·mN ([g]).
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So, for given x ∈ M̃ and γ ∈ π1(M) we shall have

f(γx) = logmN (f(γx))
= logmN (h(γ) · f(x))
= log(m0(h(γ)) ·mN (f(x))
= logm0(h(γ)) + logmN (f(x))

= h(γ) + f(x),

which proves the equivariance. �

Step 2. — We now assume that Γ0 is not unimodular. However, the
connected component (Γ0)e may be or may not be unimodular.

Proposition 6.12. — If Γ0 and (Γ0)e are not unimodular, then the
closure L of any leaf L fibers over S1.

Proof. — Notice that dim Γ0 > 1, hence the modular function of Defini-
tion 2.8 is defined. Moreover, from Proposition 5.16 it follows that Γ and
(Γ)e are not unimodular.

Now, Theorem 6.6 ensures that the foliation induced by F on L is mod-
eled by (N̂L)n = (Γ)e n = Σ/KL, where the isotropy KL is compact. Anal-
ogously to the proof of Proposition 6.10, the modular function

m : Σ→ (R+, · )

passes to the quotient and we can define a map

m : (N̂L)n → R+.

By considering the composition of logm with the developing submersion of
the foliation on L, as well as the composition of logm with the holonomy
morphism Aut(p′′)→ Σ, we shall obtain an R-Lie foliation on L and, again,
by applying Tischler’s theorem, we shall arrive to the desired result, namely,
that L fibers over S1. �

It only remains to test the final and more difficult case.

Proposition 6.13. — If Γ0 is not unimodular, but (Γ0)e is unimodu-
lar, then the total space of the Blumenthal bundle Γ\f∗(G0])→ M fibers
over S1.

Before proving this Proposition we need several previous Lemmas.
From Proposition 5.16, we know that the group (Γ)e is unimodular but

Γ is not. We shall consider the universal covering π0 : Ĝ0] → G0]. Let

H = π−1
0 (Γ0) ⊂ Ĝ0]

ANNALES DE L’INSTITUT FOURIER



NON-UNIMODULAR FOLIATIONS 881

be the inverse image of the closure Γ0. By Proposition 2.12 we know that
H is not unimodular.

Lemma 6.14. — The connected component He is unimodular.

Proof. — By Proposition 2.12 again, we know that H0 = π−1
0 ((Γ0)e) is

unimodular, hence, by Proposition 2.10, the group (H0)e is unimodular. In
fact, we shall prove that this latter group equals He.

Obviously, H0 ⊂ H, so (H0)e ⊂ He. On the other hand, π0(He) ⊂
π0(H) = Γ0, hence π0(He) ⊂ (Γ0)e, by connectedness. It follows that He ⊂
H0 and by connectedness, He ⊂ (H0)e. �

The following result is the crucial one. Let mH be the modular function
of H.

Lemma 6.15. — It is possible to extend the non-trivial morphism of
groups mH : H → (R+, · ) to a map m : Ĝ0] → R+ such that:

(1) m|H = mH ,
(2) m(hy) = m(h)m(y) for all h ∈ H, y ∈ Ĝ0].

Proof. — Since He and H have the same Lie algebra, it is clear that
the modular function of He is the restriction of mH to He. But He is
unimodular (Lemma 6.14), then mH(γ) = mHe

(γ) = 1 for all γ ∈ He.
Hence there is a well-defined morphism

(6.3) mH : H/He → (R+, · )

given by mH([γ]) = mH(γ).
From Proposition 3.8 we know that the manifold

W = H\Ĝ0] = Γ0\G0]

is compact. Since the group Ĝ0] is simply connected, the universal covering
of W is the manifold Ŵ = H\Ĝ0], and the fundamental group of W is
π1(W ) = He\H. By applying logarithms, we have a group morphism

logmH : H/He = π1(W )→ R,

so we can identify logmH ∈ Hom(π1(W ),R) with a cohomology class [ω] ∈
H1
DR(W ) such that

(6.4) logmH([α]) =
∫
α

ω, for all [α] ∈ π1(W ),

where [α] denotes the homotopy class of the loop α in W with base point
[e].
Now, let π : Ĝ0] → W = H\Ĝ0] be the natural projection. The 1-

form π∗ω in Ĝ0] is closed, because ω is closed in W . Since Ĝ0] is simply
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connected, hence H1(Ĝ0]) = 0, the form π∗ω is exact, that is, there exists a
map f : Ĝ0] → R such that df = π∗ω. Since the translations by a constant
do no affect the differential we can consider that f(e) = 0.
With this condition, we have that f verifies the following properties,

whose proof will be delayed to Lemma 6.16:
(1) f(γx) = f(γ) + f(x), for all γ ∈ H, x ∈ Ĝ0];
(2) f|H = logmH .

Let us take m = ef : Ĝ0] → R+. This is the map we were looking for,
because

m(γ) = ef(γ) = elogmH(γ) = mH(γ),
for all γ ∈ H, and

m(γy) = ef(γy) = ef(γ)+f(y) = ef(γ)ef(y) = m(γ)m(y),

for all γ ∈ H, y ∈ Ĝ0]. �

We now prove the Lemma announced a few lines above.

Lemma 6.16. — We have:
(1) f(γx) = f(γ) + f(x), for all γ ∈ H, x ∈ Ĝ0];
(2) f|H = log mH .

Proof.
(1). — Since H ⊂ Ĝ0], we consider the composition f ◦ Lγ : Ĝ0] → R,

where Lγ denotes the left translation Lγ(x) = γx. For the projection π :
Ĝ0] →W = H\Ĝ0] we have π ◦ Lγ = π because

(π ◦ Lγ)(x) = [γx] = [x] ∈ H\Ĝ0].

Then, for all v ∈ TxĜ0], we have

d(f ◦ Lγ)x(v) = (f ◦ Lγ)∗x(v)
= (f∗γx ◦ (Lγ)∗x)(v)
= (df)γx((Lγ)∗x(v))
= (π∗ω)γx((Lγ)∗x(v))
= ω[γx](π∗γx((Lγ)∗x(v)))
= ω[x]((π ◦ Lγ)∗x(v))
= ω[x](π∗x(v))
= (π∗ω)x(v)
= (df)x(v).
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As a consequence, d(f ◦Lγ) = df for all γ ∈ H. But, since Ĝ0] is connected,
it follows that f ◦Lγ = f + c(γ) for some constant c(γ) depending only on
γ. Moreover, since f(e) = 0, we obtain that c(γ) = f(γ). It follows that for
an arbitrary x ∈ Ĝ0] we have f(γx) = f(γ) + f(x).

(2). — Let β be a path in Ĝ0], joining the identity e to the point γ ∈ H.
If we project this path through π we obtain a loop α = π◦β inW = H\Ĝ0].
So, by (6.4), we have

logmH([π ◦ β]) =
∫
π◦β

ω.

Now, the isomorphism π1(W ) ∼= H/He sends the homotopy class of the
loop α into the final point β(1) = γ of the lifting β with β(0) = e. So
logmH([π ◦ β]) = logmH(γ).
On the other hand,∫

π◦β
ω =

∫
[0,1]

(π ◦ β)∗ω

=
∫

[0,1]
β∗π∗ω

=
∫

[0,1]
β∗(df)

=
∫

[0,1]
d(β∗f)

=
∫

[0,1]
d(f ◦ β)

= (f ◦ β)(1)− (f ◦ β)(0)
= f(γ)− f(e)
= f(γ).

So we have checked that f(γ) = logmH(γ) for all γ ∈ H. �

Proof of Proposition 6.13. — Consider the restriction H = π−1
0 (Γ0) →

Γ0 of the universal covering π0 : Ĝ0] → G0]. By Proposition 2.12, it follows
that

m(k) = mH(k) = det AdΓ0
(e) = 1

for all k ∈ kerπ0 ⊂ H, where m : Ĝ0] → R+ is the map given by
Lemma 6.15. In this way, the map m passes to the quotient Ĝ0]/ kerπ0, so
we have a map

m′ : G0] → R+
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such that

(6.5) m′(γ y) = m′(γ)m′(y),

for all γ ∈ Γ0, y ∈ G0].
Then, the map logm′ : G0] → R is surjective, because G0] is connected

and m|H = mH is not bounded (the group H is not unimodular).
Let us consider the diagram defining the Blumenthal bundle as in Sec-

tion 3.2, that is,

(6.6)

f∗(G0])
f̄ //

τ

��

G0]

Γ0\f∗(G0])

The maps D = logm′ ◦ f and h′ = logm′ ◦ h0, where h0 : Aut(τ) ∼= Γ0,
are respectively the developing map and the holonomy morphism of an R-
Lie foliation on the (non-connected) manifold Γ0\f∗G0]. This manifold is
compact by Proposition 3.8.
It only remains to show the equivariance, which will follow from the

condition (6.5). In fact, if x ∈ f∗(G0]) and γ ∈ Aut τ
h∼= Γ0, then

D(γx) = logm′(f(γx))

= logm′(h(γ)f(x))

= log(m′(h(γ)) ·m′(f(x)))

= log(m′(h(γ)) + log(m′(f(x)))
= h′(γ) +D(x)

because h(γ) ∈ Γ0.
Hence, Tischler theorem applies and allows us to state that Γ0\f∗(G0])

fibers over S1. �

6.3. Lie foliations

Remember from Example 3.4 that the foliation F on the compact man-
ifold M is a Lie foliation if it is transversely homogeneous with transverse
model a Lie group. We can assume that N = Ĝ0 is a connected simply
connected Lie group.
In this case the foliation is Riemannian and the developing submersion

is a locally trivial bundle with connected fibers. Moreover, the Blumenthal
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fiber bundle is identified with M . Finally, Theorem 4.27 reads as follows,
as it is well known:

Theorem 6.17. — Given a Ĝ0-Lie foliation F , with holonomy Γ0 ⊂ Ĝ0,
the base-like cohomology H(M/F) is isomorphic to HΓ(Ĝ0).

On the other hand, our Theorem 5.17 shows that if the Lie groups Ĝ0 and
Γ0 are unimodular then the foliation F is unimodular. El Kazimi Alaoui
and Nicolau went further in the study of the unimodularity of Lie foliations
and proved the following result.

Theorem 6.18 ([7, Theorem 1.2.4]). — The Ĝ0-Lie foliation F is uni-
modular if and only if the Lie groups Ĝ0 and Γ0 are unimodular.

Finally, we have proved in [17] the following result, which is now a par-
ticular case of our Theorem 1.3, when restricted to Lie foliations.

Theorem 6.19. — If the Lie foliation F is not unimodular then either
M or the closures of the leaves fiber over S1,

Example 6.20. — What follows is Carrière’s example [5] cited in the In-
troduction. Let A be a matrix in SL(2,Z) with traceA > 2. We can give a
Lie group structure to M̂ = R3 by defining

(u, t) · (u′, t′) = (u+Atu′, t+ t′).

The manifold M will be the quotient of M̂ by the discrete subgroup Z3.
Let λ > 0 be an eigenvalue of A with an eigenvector v = (a, b) ∈ R2,

|v| = 1. The affine group GA(R) of the real line, generated by homotheties
and translations, can be represented by the matrices

(6.7) g =
[
λt s

0 1

]
, s, t ∈ R,

so the map f̂ : R3 → GA(R) given by

f(x, y, t) =
[
λt ax+ by

0 1

]
is a Lie group morphism. Its kernel (fiber) is the line generated by the
eigenvectors of the eigenvalue 1/λ, which induces a Lie flow on M . Its
leaves are not closed because λ is an irrational number, their closures are
tori. The holonomy morphism h will be the restriction of f̂ to π1(T 3

A) = Z3.
The closure the image of h is the subgroup Γ ∼= Z× R of matrices[

λn s

0 1

]
, n ∈ Z, s ∈ R.
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which is abelian, hence unimodular. On the other hand, for g = (s, t) as
in (6.7), then

Ad(g) =
[
λt −s
0 1

]
,

so the modular function of GA(R) is

m(s, t) = λt.

As stated in the proof of Theorem 6.10, the map

(logm ◦ f̂)(x, y, t) = log λ t

defines a Lie foliation on T 3
A which is the kernel of the closed 1-form ω =

log λ dt. Since the group of periods of this form is the discrete subgroup of
R generated by log λ, the foliation is a fibration over S1 with tori as fibers.
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