278 research outputs found

    Maximally localized Wannier functions in LaMnO3 within PBE+U, hybrid functionals, and partially self-consistent GW: an efficient route to construct ab-initio tight-binding parameters for e_g perovskites

    Full text link
    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e_g states of the prototypical Jahn-Teller magnetic perovskite LaMnO3 at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without additional on-site Hubbard U term, hybrid-DFT, and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e_g tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise "noninteracting" TB parameters, and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.Comment: 30 pages, 7 figure

    A new polymorphic material? Structural degeneracy of ZrMn_2

    Full text link
    Based on density functional calculations, we propose that ZrMn_2 is a polymorphic material. We predict that at low temperatures the cubic C15, and the hexagonal C14 and C36 structures of the Laves phase compound ZrMn_2 are nearly equally stable within 0.3 kJmol^{-1} or 30 K. This degeneracy occurs when the Mn atoms magnetize spontaneously in a ferromagnetic arrangement forming the states of lowest energy. From the temperature dependent free energies at T approx 160K we predict a transition from the most stable C15 to the C14 structure, which is the experimentally observed structure at elevated temperatures.Comment: 4 pages, 3 figure

    Plexus anesthesia versus general anesthesia in patients for carotid endarterectomy with patch angioplasty:Protocol for a systematic review with meta-analyses and Trial Sequential Analysis of randomized clinical trials

    Get PDF
    Introduction: Traditional carotid endarterectomy is considered to be the standard technique for prevention of a new stroke in patients with a symptomatic carotid stenosis. Use of plexus anesthesia or general anesthesia in traditional carotid endarterectomy is, to date, not unequivocally proven to be superior to one other. A systematic review is needed for evaluation of benefits and harms to determine which technique, plexus anesthesia or general anesthesia is more effective for traditional carotid endarterectomy in patients with symptomatic carotid stenosis. Methods and outcomes: The review will be conducted according to this protocol following the recommendations of the ‘Cochrane Handbook for Systematic Reviews’ and reported according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Randomized Clinical Trials comparing plexus anesthesia versus general anesthesia in traditional carotid endarterectomy will be included. Primary outcomes will be postoperative death and/ or stroke (<30 days) and serious adverse events. Secondary outcomes will be non-serious adverse events. We will primarily base our conclusions on meta-analyses of trials with overall low risk of bias. We will use Trial Sequential Analysis to assist the evaluation of imprecision in Grading of Recommendations Assessment, Development and Evaluation. However, if pooled point-estimates of all trials are similar to pooled point-estimates of trials with overall low risk of bias and there is lack of a statistical significant interaction between estimates from trials with overall high risk of bias and trials with overall low risk of bias we will consider the Trial Sequential Analysis adjusted confidence interval precision of the estimate achieved in all trials as the result of our meta-analyses. Ethics and dissemination: The proposed systematic review will collect and analyze secondary data from already performed studies therefore ethical approval is not required. The results of the systematic review will be disseminated by publication in a peer-review journal and submitted for presentation at relevant conferences

    First-principles calculations of phonon and thermodynamic properties of AlRE (RE= Y, Gd, Pr, Yb) intermetallic compounds

    Full text link
    The phonon and thermodynamic properties of rare-earth-aluminum intermetallics AlRE (RE=Y, Gd, Pr, Yb) with B2-type structure are investigated by performing density functional theory and density functional perturbation theory within the quasiharmonic approximation. The phonon spectra and phonon density of states, including the phonon partial density of states and total density of states, have been discussed. Our results demonstrate that the density of states is mostly composed of Al states at the high frequency. The temperature dependence of various quantities such as the thermal expansions, the heat capacities at constant volume and constant pressure, the isothermal bulk modulus, and the entropy are obtained. The electronic contribution to the specific heat is discussed, and the presented results show that the thermal electronic excitation affecting the thermal properties is inessential.Comment: 17 pages,8 figure

    Charge self-consistent many-body corrections using optimized projected localized orbitals

    Get PDF
    In order for methods combining ab initio density-functional theory and many-body techniques to become routinely used, a flexible, fast, and easy-to-use implementation is crucial. We present an implementation of a general charge self-consistent scheme based on projected localized orbitals in the projector augmented wave framework in the Vienna Ab Initio Simulation Package (VASP). We give a detailed description on how the projectors are optimally chosen and how the total energy is calculated. We benchmark our implementation in combination with dynamical mean-field theory: first we study the charge-transfer insulator NiO using a Hartree-Fock approach to solve the many-body Hamiltonian. We address the advantages of the optimized against non-optimized projectors and furthermore find that charge self-consistency decreases the dependence of the spectral function - especially the gap - on the double counting. Second, using continuous-time quantum Monte Carlo we study a monolayer of SrVO3_3, where strong orbital polarization occurs due to the reduced dimensionality. Using total-energy calculation for structure determination, we find that electronic correlations have a non-negligible influence on the position of the apical oxygens, and therefore on the thickness of the single SrVO3_3 layer.Comment: 11 pages, 6 figure

    A note on large-scale logistic prediction: using an approximate graphical model to deal with collinearity and missing data

    Get PDF
    Large-scale prediction problems are often plagued by correlated predictor variables and missing observations. We consider prediction settings in which logistic regression models are used, and propose a novel approach to make accurate predictions even when predictor variables are highly correlated and only partly observed. Our approach comprises three steps. Firstly, to overcome the collinearity issue, we propose to model the joint distribution of the outcome variable and the predictor variables using the Ising network model. Secondly, to render the application of Ising networks feasible, we use a latent variable representation to apply a low-rank approximation to the network’s connectivity matrix. Finally, we propose an approximation to the latent variable distribution that is used in the representation to handle missing observations. We demonstrate our approach with numerical illustrations

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure

    Value of bronchoscopy after EUS in the preoperative assessment of patients with esophageal cancer at or above the carina

    Get PDF
    Introduction: Esophageal cancer is an aggressive disease with a strong tendency to infiltrate into surrounding structures. The aim of the present study is to determine the additional value of bronchoscopy for detecting invasion of the tracheobronchial tree after endoscopic ultrasonography (EUS) in the preoperative assessment of patients with esophageal cancer at or above the carina. Materials and Methods: Between January 1997 and December 2006, 104 patients were analyzed for histologically proven esophageal cancer at or above the carina. All patients underwent both EUS and bronchoscopy (with biopsy on indication) in the preoperative assessment of local resectability. Results and Discussion: After extensive diagnostic workup, 58 of 104 patients (56%) were eligible for potentially curative esophagectomy; nine of these 58 patients (9/58, 15%) appeared to be incurable peroperatively because of ingrowth in the tracheobronchial tree (five patients), ingrowth in other vital structures (two patients) or distant metastases (two patients). Of the 46 non-operable patients, local irresectability (T-stage 4) was identified in 26 patients (26/46, 57%) due to invasion of vital structures on EUS: invasion of the aorta in six patients, invasion of the lung in 11 patients; in 12 patients invasion of the tracheobronchial tree was described, which was confirmed by bronchoscopy in only five patients. No patients with T4 were identified by bronchoscopy alone. Conclusion: For patients with esophageal tumors at or above the carina, no additional value of bronchoscopy (with biopsy on indication) to exclude invasion of the tracheobronchial tree was seen after EUS in a specialized centre. Although based on relatively small numbers, we conclude that bronchoscopy is not indicated if no invasion of the airways is identified on EUS

    Clinical added value of MRI to CT in patients scheduled for local therapy of colorectal liver metastases (CAMINO):study protocol for an international multicentre prospective diagnostic accuracy study

    Get PDF
    Abstract Background Abdominal computed tomography (CT) is the standard imaging method for patients with suspected colorectal liver metastases (CRLM) in the diagnostic workup for surgery or thermal ablation. Diffusion-weighted and gadoxetic-acid-enhanced magnetic resonance imaging (MRI) of the liver is increasingly used to improve the detection rate and characterization of liver lesions. MRI is superior in detection and characterization of CRLM as compared to CT. However, it is unknown how MRI actually impacts patient management. The primary aim of the CAMINO study is to evaluate whether MRI has sufficient clinical added value to be routinely added to CT in the staging of CRLM. The secondary objective is to identify subgroups who benefit the most from additional MRI. Methods In this international multicentre prospective incremental diagnostic accuracy study, 298 patients with primary or recurrent CRLM scheduled for curative liver resection or thermal ablation based on CT staging will be enrolled from 17 centres across the Netherlands, Belgium, Norway, and Italy. All study participants will undergo CT and diffusion-weighted and gadoxetic-acid enhanced MRI prior to local therapy. The local multidisciplinary team will provide two local therapy plans: first, based on CT-staging and second, based on both CT and MRI. The primary outcome measure is the proportion of clinically significant CRLM (CS-CRLM) detected by MRI not visible on CT. CS-CRLM are defined as liver lesions leading to a change in local therapeutical management. If MRI detects new CRLM in segments which would have been resected in the original operative plan, these are not considered CS-CRLM. It is hypothesized that MRI will lead to the detection of CS-CRLM in ≄10% of patients which is considered the minimal clinically important difference. Furthermore, a prediction model will be developed using multivariable logistic regression modelling to evaluate the predictive value of patient, tumor and procedural variables on finding CS-CRLM on MRI. Discussion The CAMINO study will clarify the clinical added value of MRI to CT in patients with CRLM scheduled for local therapy. This study will provide the evidence required for the implementation of additional MRI in the routine work-up of patients with primary and recurrent CRLM for local therapy. Trial registration The CAMINO study was registered in the Netherlands National Trial Register under number NL8039 on September 20th 2019
    • 

    corecore