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Abstract Large-scale prediction problems are often plagued by correlated predictor

variables and missing observations. We consider prediction settings in which logistic

regression models are used and propose a novel approach to make accurate predictions

even when predictor variables are highly correlated and only partly observed. Our

approach comprises three steps: first, to overcome the collinearity issue, we propose to

model the joint distribution of the outcome variable and the predictor variables using the

Ising network model. Second, to render the application of Ising networks feasible, we

use a latent variable representation to apply a low-rank approximation to the network’s

connectivity matrix. Finally, we propose an approximation to the latent variable dis-

tribution that is used in the representation to handle missing observations. We demon-

strate our approach with numerical illustrations.
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1 Introduction

Most large-scale or big data applications involve conditional models that utilize

covariates to make predictions about a variable of interest. For instance, Google

needs to predict which links to websites will be most advantageous based on

millions of previous clicks, and Netflix needs to predict movie preferences based on

millions of previous viewings and rankings. In these applications the interest is not

in explaining why the connections between websites or movies exist, but in

predicting which website will be most often requested or which movie will be

preferred by an individual user. We will focus on the prediction problem where both

the outcome variable and the covariates are binary, and the logistic regression model

is an appropriate statistical model.

As is the case with all regression models, we observe that the logistic regression

model is developed for situations where the covariates are independent and

completely observed. However, a different situation is usually observed in large-

scale applications, where covariates are typically correlated. As a consequence of the

correlations between covariates, i.e., collinearity, the obtained set of coefficients is no

longer unique. This can be seen in, for instance, the coordinate descent algorithm

(Hastie et al. 2015), where each covariate is treated separately. For two equivalent

covariates, any solution with a linear combination of the two (normalized) coefficients

is correct, even when regularization is applied. This is certainly an issue for the

identification of relevant covariates, i.e., variable selection. In a particular sample, one

of the collinear covariates will have a slightly larger coefficient and, therefore, ends

up in the solution, while the other does not. But in another sample it could be the other

way around. This means that variable selection with collinear covariates is unreliable.

We will illustrate that collinearity is not a problem for prediction.

Another issue is that in most large-scale applications covariates are only partially

observed (e.g., Rubin 1976; Rousseeuw 2016). For estimation and variable selection,

it is then pertinent to know in which way the data came to be missing. For instance,

data could be missing completely at random, which means that there is no connection

between the missing observations and the data generating process. But data could also

be missing precisely because of the data-generating process. For instance, a response

to the question‘‘do you drink more on average than others in your circle of friends’’

will be missing if a negative response is observed to the question ‘‘do you take

alcohol’’. In such cases, conditional on taking alcohol, the two covariates will be

correlated, and so the missing observations cannot be ignored. We illustrate that

predictions based on partially observed data can still be accurate, even when the

process that generates missing data cannot be ignored in a statistical sense.

Our goal in this paper was to introduce a novel approach to make accurate

predictions with the logistic regression model when covariates are highly correlated

and only partly observed. Our approach comprises three steps: First, we propose to

model the joint distribution of the outcome variable and the predictor variables with the

Ising model. In the Ising model the correlations between the observed variables are

explicitly modeled, which overcomes the collinearity issue. Second, we use recent

results that relate Ising networks to latent variable models to render the application of
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Ising models computationally tractable. Specifically, we use a low-rank approximation

to the network’s connectivity matrix, which is opportune when variables are highly

correlated (i.e., collinearity). Finally, we propose to approximate the latent variable

distribution in the representation of the Ising model, which results in a model-based

approximation to the full Ising model that is able to handle missing observations.

Numerical illustrations are used to demonstrate different features of our approach.

2 Step I: the Ising model to overcome collinearity

For prediction, we are interested in the conditional distribution Pðxi j xniÞ, where xi
is an element of x 2 f�1;þ 1gp and xni is the vector x excluding the ith element.

Even though we are only interested in the predictive distribution Pðxi j xniÞ, our
observations are the realizations of a multivariate random variable x. The

multivariate distribution PðxÞ that is consistent with the logistic regression model

is the Ising network model (Lenz 1920; Ising 1925),

PðxÞ ¼
exp xTRxþ xTl

� �
P

x exp xTRxþ xTlð Þ ;

where R 2 Rp�p is a symmetric matrix of pairwise interaction parameters rij, and
l 2 Rp a vector of main effects. Observe that the correlations between elements in x

are no problem for the Ising model as their interactions rij are explicitly modeled.

That is, there is no collinearity issue when estimating the full Ising model PðxÞ.
From the joint distribution we can then obtain the correct full-conditional

Pðxi j xniÞ, and it is easily seen that the full-conditional distribution that is obtained

from the Ising model is a logistic regression model:

Pðxi j xniÞ ¼
exp xi li þ 2

P
j 6¼i rijxj

h i� �

P
xi
exp xi li þ 2

P
j 6¼i rijxj

h i� � :

Hence, we can overcome the collinearity issues with logistic regression by esti-

mating the full Ising model.

However, estimating an Ising model proves to be far more complex than

estimating a logistic regression model. A first problem is the number of parameters

that needs to be estimated for the Ising model. Whereas the number of parameters is

linear in the number of covariates p for the logistic regression model, it is quadratic

in p for the Ising model. A second problem is that the density of the Ising model is

computationally intractable, except for small or heavily constrained networks. This

computational burden is due entirely to the model’s normalizing constant:

Z ¼
X

x

exp xTRxþ xTl
� �

;

which is the sum over all 2p possible realizations of x. Thus, even though we have

resolved the collinearity issue with the Ising model, we have also increased the
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number of parameters with an order of magnitude and need to deal with estimating a

model that is computationally intractable.

3 Step II: low-rank approximations for computational tractability

A latent variable representation of the Ising model, in combination with a low-rank

approximation to the full-connectivity matrix R, is the two crucial ingredients to

render large-scale applications of the Ising model entirely tractable. The latent

variable representation of the Ising model was introduced by Kac (1968).

Specifically, Kac showed that every eigenvector of the connectivity matrix R
generates a latent variable, such that the manifest random variables x are

independent given the full set of latent variables g. Since the diagonal elements

from the connectivity matrix R are not identifiable from the data, we decompose it

as

Rþ cIp ¼ QðKþ cIpÞQT ¼ UUT;

where K is a diagonal matrix consisting of the eigenvalues of the original con-

nectivity matrix, and the translation by c serves to ensure that all eigenvalues are

positive, i.e., ensuring that UUT is positive (semi-)definite and at the same time

preserve the off-diagonal elements of R. The latent variable representation of Kac

then follows immediately from a clever use of the Gaussian identity:

exp xTUUTxþ xTl
� �

¼
Z

Rp

1
ffiffiffi
p

p p exp 2xTUgþ xTl� gTg
� �

d g

This latent variable representation has been further developed by Emch and Knops

(1970) and has been independently rediscovered many times (e.g., Olkin and Tate

1961; Besag 1974; McCullagh 1994; Anderson and Vermunt 2000).

It was recently shown (Marsman et al. 2015; Epskamp et al. 2017) that the

associated conditional distribution Pðx j gÞ is the multidimensional item response

theory (MIRT) model (Reckase 2009)

Pðxi j gÞ ¼
exp xi 2u

T
i gþ li

� �� �

P
xi
exp xi 2u

T
i gþ li

� �� � ;

with ui being the ith column of UT. MIRT models are frequently used in psycho-

logical and educational measurement (Ackerman et al. 2003; Ackerman 1996),

where the observed variables correspond to item responses on some test or ques-

tionnaire, and the latent variables relate to the trait or abilities being assessed

(Borsboom and Molenaar 2015). Importantly, this representation inspired a full-

data-information estimation procedure that avoids having to compute the Ising

model’s intractable normalizing constant (Marsman et al. 2015).

A second crucial ingredient is the low-rank approach that Marsman et al. (2015)

proposed to approximate the full connectivity matrix, such that the number of

parameters becomes linear in p. Their low-rank approach makes use of the Eckart
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and Young Theorem (1936), which states that in a least squares sense the best rank-r

approximation to the full connectivity matrix R is one in which all but the r largest

eigenvalues are equated to zero. Low-rank approximations have become increas-

ingly popular in prediction problems since their crucial role in winning the Netflix

price competition (Koren et al. 2009; Bell and Koren 2007; Bell et al. 2010) and it

has been part of Google’s system ever since the very first implementation of the

pageRank algorithm (Page et al. 1999; Brin and Page 2012). Most important for our

present endeavors, however, is that a low-rank approximation to the full

connectivity matrix is expected to make accurate predictions when predictor

variables are highly correlated.

4 Step III: an approximate latent variable distribution for missing data

An important feature of IRT models is that they are closed under marginalization.

That is, because the manifest variables xi are independent given the latent variable

g, we find that the marginal,

X

xi2f�1g

Yp

j¼1

Pðxj j gÞ ¼
Y

j6¼i

Pðxj j gÞ; ð1Þ

is again an IRT model. That the IRT model is closed under marginalization makes it

a valuable tool for applications with data that are subject to missing data (Eggen

2004), as one can simply marginalize over the missing observations. In contrast, the

Ising model is not closed under marginalization. That is, in general we find that

PðxniÞ ¼
X

xi2f�1g
Pðxi;xniÞ

is itself not an Ising model. Unfortunately, the marginalization property of the IRT

model does not transfer to the latent variable expression of the Ising model, which is

entirely due to the latent variable distribution f ðgÞ. To train the Ising model in the

face of incomplete data, we, therefore, either have to omit any incomplete cases

from the analysis, use imputation techniques to artificially complete the observed

data (Rubin 1987), or make use of approximate models that allow for missing data.

We take the latter approach and show that we can make reliable predictions using a

low-rank approximate model, even in the presence of correlated and missing data.

A key difference between regular applications of IRT models and the latent variable

representation of the Ising model is in the prior (or population) distribution of the latent

variables that are used. The distribution of latent variables is typically assumed to be

multivariate normal, but in the representation of the Ising model it is the mixture:

f ðgÞ ¼ 1
ffiffiffi
p

p p
Z

Y

i

X

xi

exp xi½2uTi gþ li�
� �

" #

expð�gTgÞ ¼
X

x

PðxÞf ðg j xÞ;

where to each of 2p possible realizations of x we have a multivariate normal pos-

terior distribution with mean UTx and variance 2Ip. Even though this latent variable
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model is computationally intractable, it often takes a simple form in each of its

dimensions. Specifically, it closely resembles either a single normal distribution

with a mean of zero or a mixture of two normal distributions with their respective

means placed symmetrically about zero.

That the latent variable distribution tends to have either a single mode or has two

modes can be seen by inspecting the derivative of logðf ðgÞÞ with respect to g (for

ease of presentation assuming a single dimension);

d

d g
log f ðgÞ ¼ 2

Xp

i¼1

ui tanhð2uigþ liÞ � 2g ¼ 2hðgÞ � 2g;

which shows that the latent variable distribution has modes (and minima) at the

fixed points hðgÞ ¼ g. A plot of hðgÞ against g is shown in Fig. 1, together with the

line g ¼ g, which rotates with respect to hðgÞ as a function of the variables in the

model. Note that the line can cross the curve hðgÞ either once (at zero) such that

there is a single mode, or three times (as depicted here) such that there are two

modes (symmetric about zero) and a local minimum at zero. The latent variable

distribution f ðgÞ can thus be closely approximated by a small mixture of normal

distributions.

There are two important consequences of replacing the latent variable

distribution of the Ising model with some other latent variable distribution, say

gðgÞ. A first consequence is that the marginal distribution of the observed variables

PðxÞ ¼
Z

Rp

Pðx j gÞgðgÞdg;

is, in general, not analytically available and requires numeric procedures to com-

pute. A second consequence follows from the indeterminancy of the parameters U,

l (and g) in the MIRT model. By replacing the latent variable distribution f ðgÞ with
a distribution gðgÞ, the parameters are placed on a different scale. This

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

η

h(η)

Fig. 1 A plot of g versus hðgÞ
illustrating that f ðgÞ can have
either one or two modes. A local
minimum and two local maxima
are found on the intersection
with the straight solid line
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indeterminancy does not affect the marginal distribution of observable variables

(i.e., predictions), although it does affect parameter recovery.

The validity of our approximate model rests on how well f ðgÞ is approximated by

gðgÞ. To assess the validity of this approach, we can make use of recent advances in

plausible value methodology and explicitly consider whether or not the true latent

variable distribution is equal (or similar) to gðgÞ. Plausible values are draws from

the posterior distribution of the latent variables g (Mislevy 1991; von Davier et al.

2009) and are commonly used in large-scale educational surveys to accommodate

researchers in the field that are not able to estimate the complex IRT models used

for these surveys. Recently, it was shown that the marginal distribution of plausible

values is a consistent estimator of the true latent variable distribution f ðgÞ (Marsman

et al. 2016), meaning that one can assess the validity of using a single multivariate

normal distribution by inspecting the (marginal) distribution of plausible values.

5 Numerical illustrations

Below we demonstrate the different aspects of our theory using three broad

illustrations. The first illustration aims to showcase that the IRT model is able to

make accurate predictions with correlated variables. The second illustration aims to

showcase that the IRT model is able to accurately predict both observed and missing

observations when the missing data mechanism is ignorable and the data are

completely missing at random (MCAR; see Appendix A). We end this illustration

with a comparison with logistic regression. The third illustration is used to

demonstrate that there is a limit to the IRT model’s capacity to accurately predict

observed and missing data points when the missing data mechanism is nonignorable

(data not missing at random; NMAR). We consider several situations in which we

vary the effect of the missing data mechanism on the observed correlations and mix

settings with MCAR and MNAR in the training and testing phase. The main results

from our illustrations are shown in Fig. 2. We first discuss the methods and models

that are used.

5.1 Generating correlated binary data

To generate correlated binary variables we use the Ising model, with a rank ten

connectivity matrix R that is based on the following eigenvalues:

ks ¼
1

s
� ½1:00; 0:80; 0:65; 0:30; 0:25; 0:20; 0:16; 0:11; 0:06; 0:01�:

The value of s modifies the strengths of pairwise correlations of variables in the

network. Figure 3 illustrates that the more extreme correlations (i.e., �1) occur for

smaller values of s. In the three illustrations we will use the values s ¼ 0:5 and

s ¼ 1:0. The Ising model’s parameters Q and l will be sampled uniformly between

�0:1=p and 0.1 / p for the p-variable networks (Q is made orthogonal), where

scaling by p�1 ensured similar dynamics for the different sized networks.
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Data were generated from the Ising model using a Gibbs sampler (Geman and

Geman 1984) applied to the joint distribution f ðx;gÞ of the latent variables g and the

data x. In each iteration of the Gibbs sampler, we sample from the full-conditional

posterior distribution f ðg j xÞ of the latent variables, and the full-conditional

distribution Pðx j gÞ of the data. Both full-conditional distributions are easy to

sample from; the posterior distribution of the latent variable f ðg j xÞ is a multivariate
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Fig. 2 The main results for applications of a two-dimensional IRT model to data generated from a
s ¼ 1:0 network. The y-axis shows the drop in accuracy for the test set predictions as compared to

accuracy of the true model. That is, ctrue � ctest if the complete data are used, or ctrue � c
ðoÞ
test when there are

missing data. Predictions from the true model always make use of the complete data. The x-axis shows the
different situations; collinearity (c.f. Table 1), ignorable missingness (denoted MCAR; c.f. Table 2),
nonignorable missingness with moderate effects (denoted MNAR1; c.f. Table 5) and nonignorable
missingness with severe effects (denoted MNAR2; c.f. Table 6)

Table 1 Prediction accuracy

for the two-dimensional IRT

model applied to correlated data

n p ctrue ctrain ctest

s ¼ 1:0 network data

100 1000 81 81 80

100 100 80 80 79

1000 100 81 81 81

1000 1000 82 82 82

s ¼ 0:5 network data

100 1000 91 91 90

100 100 91 91 91

1000 100 92 92 92

1000 1000 91 90 89
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normal distribution with mean vector UTx (where UT ¼ QTK
1
2 as before) and a

variance-covariance matrix 2I10, and Pðx j gÞ is a ten-dimensional IRT model.

5.2 Estimating the MIRT model

In each simulation we train the two-dimensional IRT model

Pðxi j g; ui; liÞ ¼
expðxi½li þ 2ui1g1 þ 2ui2g2�ÞP
xi
expðxi½li þ 2ui1g1 þ 2ui2g2�Þ

:

We assume a simple bivariate normal distribution for the latent variables;

g�Nð0;2I2Þ. We take a Bayesian approach to estimate the IRT model, which

requires us to formulate prior distributions for U and l. We will use logistic prior

distributions with location 0 and scale 1 for both U and l.
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Fig. 3 Distribution of 499,500
correlations—Pearson’s-/—in a
p ¼ 1000 variable network
based on n ¼ 1000 observations
for s 2 f0:5;1:0;1:5;2:0g. With
the value s ¼ 2:0 most of the
observed correlations are close
to zero, and with the value s ¼
0:5 most of the observed
correlations are near the
extremes

Table 2 Prediction accuracy

for the two-dimensional IRT

model applied to s ¼ 1:0
network data with ignorable

missing observations

n p ctrue c
ðoÞ
train c

ðmÞ
train c

ðoÞ
test c

ðmÞ
test

50% missing observations

100 1000 81 82 81 80 80

100 100 81 82 79 79 79

1000 100 81 80 80 80 80

1000 1000 81 82 81 81 81

90% missing observations

100 1000 82 86 79 78 77

100 100 81 88 71 78 71

1000 100 80 81 76 79 76

1000 1000 81 82 81 81 80
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A Gibbs sampler is used to produce samples from the joint multivariate posterior

distribution of the parameters and latent variables, i.e., gðU; l; g j xÞ. Whereas the

full-conditional distribution of the latent variables in the Ising model representation

is a completely tractable normal posterior distribution, i.e.,

g j x; U; l�NðUTx; 2I2Þ, this is not the case when we replace the associated

latent variable distribution. Specifically, when we utilize a normal prior distribution

for the latent variables, we observe that the full-conditional posterior distribution is

the intractable:

gðg j x;U;lÞ /
Yp

i¼1

expðxi½li þ 2ui1g1 þ 2ui2g2�ÞP
xi
expðxi½li þ 2ui1g1 þ 2ui2g2�Þ

� gðgÞ:

Similarly, we find that the full-conditional distributions of the ‘‘item’’ parameters U

and l are also intractable:

gðuij j x;g;lÞ /
Yn

v¼1

expðxiv½li þ 2ui1g1v þ 2ui2g2v�ÞP
xi
expðxi½li þ 2ui1g1v þ 2ui2g2v�Þ

� gðuijÞ

gðli j x;g;UÞ /
Yn

v¼1

expðxiv½li þ 2ui1g1v þ 2ui2g2v�ÞP
xi
expðxi½li þ 2ui1g1v þ 2ui2g2v�Þ

� gðliÞ

where gðuijÞ and gðliÞ are the logistic prior distributions, and v indexes the n ob-

servations. The problem of sampling from these full-conditional distributions has

been addressed in several places (e.g., Patz and Junker 1999a, b; Maris and Maris

2002). We use a Metropolis approach (Metropolis et al. 1953; Hastings 1970;

Tierney 1994) that was specifically designed to handle full-conditional distributions

of this form (Marsman et al. 2015, 2017).

5.3 Calculating prediction accuracy

The prediction accuracy can be calculated by 0–1 loss or Bayes risk. Computa-

tionally this has the advantage of being easy to compute, but it is also tied to convex

alternatives like logistic loss that are asymptotically equivalent to 0–1 loss (see, e.g.,

Bartlett et al. 2006). In our simulations we use 0–1 prediction accuracy, which is

defined as

c ¼ cðxi; x�i Þ ¼
1

n

Xn

v¼1

1fxvi ¼ x�vig;

where 1 is the indicator function and we predict xvi using x�vi. Observe that cðxi; x�i Þ
is the ratio of correct predictions (true positives and true negatives) out of the

n predictions that are made.

Since each of the p variables could be used as a dependent variable in Logistic

regression—there are p full-conditionals Pðxi j xniÞ—we calculate the prediction

accuracy for each of the p variables and then average them. We furthermore repeat

each procedure five times and average the results.
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5.4 The two stages of our prediction procedure

Our prediction procedure consists of two stages, a training stage and a testing stage.

5.4.1 The training stage comprises six steps

(1) Generate training data xtrain from the Ising model.

(2) Generate new predictions x� from the Ising model and compute

ctrue ¼ cðxtrain;x�Þ.
(3) Split the data into an observed part x

ðOÞ
train and a 0%, 50% or 90% missing part

x
ðMÞ
train. The missing part x

ðMÞ
train will only be used to evaluate predictions.

(4) Use the Gibbs sampler to estimate the IRT parameters htrain ¼ fU;lg and the

latent variables gtrain using the observed training data x
ðOÞ
train.

(5) Generate new predictions from the IRT model on the observed part,

xðOÞ� �Pðx j gtrain;htrainÞ;

and compute c
ðOÞ
train ¼ cðxðOÞtrain;x

ðOÞ
� Þ.

(6) Generate new predictions from the IRT model on the missing part,

xðMÞ
� �Pðx j gtrain;htrainÞ;

and compute c
ðMÞ
train ¼ cðxðMÞ

train;x
ðMÞ
� Þ.

This ends the training stage. Observe that the missing data were not used to estimate

the parameters htrain and gtrain.

5.4.2 The testing stage comprises five steps

(7) Generate testing data xtest from the Ising model.

(8) Split the data into an observed part x
ðOÞ
test and a 0%, 50% or 90% missing part

x
ðMÞ
test . The missing part will only be used to evaluate predictions.

(9) Use the Gibbs sampler to estimate the latent variables gtest using the

observed testing data x
ðOÞ
test and the IRT parameters htrain obtained from the

training stage, e.g., step (4).

(10) Generate new predictions from the IRT model on the observed part,

xðOÞ� �Pðx j gtest;htrainÞ;

and compute c
ðOÞ
test ¼ cðxðOÞtest ;x

ðOÞ
� Þ.

(11) Generate new predictions from the IRT model on the missing part,

xðMÞ
� �Pðx j gtest;htrainÞ;

and compute c
ðMÞ
test ¼ cðxðMÞ

test ;x
ðMÞ
� Þ.
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This ends the testing stage. Observe that testing data were not used to estimate the

IRT parameters htrain and that only the latent variables gtest were estimated on the

observed part from the testing data.

5.5 Illustration I: Collinearity

Table 1 reveals the prediction accuracy of a two-dimensional IRT model applied to

data generated from a s ¼ 1:0 network, and data generated from a s ¼ 0:5 network.

Evidently, the two-dimensional IRT model provides accurate predictions that cross-

validate well. As expected, the prediction accuracy is an increasing function of the

observed sample correlations (c.f. Fig. 3). Furthermore, Table 1 shows that the

approach is largely insensitive to variations in n and p, ensuring that the procedure

scales when more observations n and/or more variables p become available. This

scalability is important for situations where the number of observations n becomes

too large, and one has to use a selection of the available observations, with the

estimated IRT model cross-validating well in such applications.

The prediction accuracy of the IRT model is similar to the prediction accuracy of

the true model. This indicates a good fit of the IRT model to the network data, which

is somewhat surprising since we expect a bimodal or mixture distribution for the

latent variables in a network of such correlated variables xi. This is indeed the case.

Figure 4 shows the marginal distribution of the latent variables in the first

dimension, i.e., the marginal distributions of plausible values. It is clear that the

marginal distribution of plausible values is bimodal and diverges from the unimodal

population distribution that we have used. The fact that our predictions are still on

par irrespective of the fit of the latent variable distribution f ðgÞ shows that the

prediction procedure is robust against misspecification of the latent variable model.

5.6 Illustration II: Ignorable missing data

Table 2 reveals the prediction accuracy of a two-dimensional IRT model applied to

data generated from a s ¼ 1:0 network, with either 50 or 90% of the data missing

completely at random (MCAR; see Appendix A). Similarly, in Table 3 we report the

prediction accuracy of a two-dimensional IRT model applied to data generated from

a s ¼ 0:5 network, with either 50 or 90% of the data MCAR. We report both the

accuracy in predicting the observed data c
ðOÞ
train ¼ cðxðOÞtrain;x

ðOÞ
� Þ, and the accuracy in

predicting the missing data c
ðMÞ
train ¼ cðxðMÞ

train;x
ðMÞ
� Þ. Since the true model cannot be

used with missing observations, we evaluate the predictions from the true model

using the completely observed test data: ctrue ¼ cðxtrain;x�Þ.
The results that are reported in Tables 2 and 3 indicate that the IRT model

efficiently operates when large portions of the data are MCAR. This is particularly

evident when we compare the results in Tables 2 and 3 that are based on incomplete

data with the results in Table 1 that are based on complete data. The prediction

accuracy of the IRT model also compares favorably to the accuracy that is obtained

from the true model that is also based on the complete data. Note also that the IRT
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model is entirely capable of making accurate predictions about the missing data,

even with only 10% observations left to train the model.

5.6.1 Logistic regression

It is instructive to compare the MIRT model’s performance with that of logistic

regression. The ideal situation for this comparison would have more observations

than variables (n[ p) so that there is no need for regularization in estimating the

logistic regression model. We, therefore, use n ¼ 1000 observations on p ¼ 100

variables.

The results that are reported in Tables 2 and 3 are based on data with missing

observations. To allow a meaningful comparison between logistic regression and

MIRT when some observations are missing, we use multiple imputation to complete

the datasets. Unfortunately, we now encounter a serious complication. To impute
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Fig. 4 The marginal
distribution of the n ¼ 1000
plausible values based on p ¼
100 variables generated from a
s ¼ 0:5 network

Table 3 Prediction accuracy

for the two-dimensional IRT

model applied to s ¼ 0:5
network data with ignorable

missing observations

n p ctrue c
ðoÞ
train c

ðmÞ
train c

ðoÞ
test c

ðmÞ
test

50% missing observations

100 1000 91 91 90 90 90

100 100 92 92 91 91 91

1000 100 92 92 91 92 91

1000 1000 92 91 90 90 90

90% missing observations

100 1000 91 91 85 85 84

100 100 92 93 83 89 84

1000 100 91 90 86 90 86

1000 1000 91 91 90 91 90
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the missing observations, we need to formulate an a priori distribution for the

missing observations (c.f. Ibrahim et al. 2005). The most straightforward solution is

to specify a joint distribution for a pþ 1 dimensional vector of binary variables

x. That is, we assume that the variables are dependent on each other and inform

about each other’s missing values. Even though this is a straightforward strategy, it

will boil down to an a priori distribution for the missing observations that is at least

as complex as the computationally intractable Ising model.

To overcome this complication, we assume that the variables are a priori

independent. Specifically, we assume for each missing observation that the prior

probability that its value is þ1 is equal to some number p. We use the value p ¼ 0:5
since we have no a priori preference for a particular value of the missing

observation. Denote the logistic regression model as

Pðy j xÞ ¼
exp y aþ xTb

� �� �
P

y exp y aþ xTb½ �ð Þ ;

with y 2 f�1;þ 1g the dependent variable and x 2 f�1;þ 1gp�1
a vector of

covariates. The posterior distribution for a missing observation xi is easily

computed:

Pðxi j y; xniÞ ¼
Pðy j xni; xiÞPðxiÞP
xi
Pðy j xni; xiÞPðxiÞ

:

Observe that the distribution Pðxi j y; xniÞ favors values of xi that minimize

jð2y� 1Þ � EðyÞj ¼ jð2y� 1Þ � Pðy j xÞj.
We use the Gibbs sampler to estimate the logistic regression model and use

logistic prior distributions with location 0 and scale 1 for the model’s parameters a
and b. Our imputation strategy expands the Gibbs sequence by two distinct steps. In

the first step, missing values for the dependent variable are drawn from the

predictive distribution Pðy j xÞ (i.e., the logistic regression model). In the second

step, missing values for each of the p covariates are drawn from their respective

posterior distributions Pðxi j y; xniÞ. After these two steps the data are complete and

we can simulate the model’s parameters a and b from their full-conditional posterior

distributions as if all data had been observed.

We generate 300 datasets from the s ¼ 1:0 network and 300 datasets from the

s ¼ 0:5 network and randomly remove 0, 50 or 90 of the observations. The

prediction accuracy for logistic regression applied to these datasets are reported in

Table 4 and reveals three important results. The first result is that the MIRT model

performs better on the completely observed data than the logistic regression model.

This is likely due to collinearity, as the relative performance of logistic regression

deteriorates with increasing correlations. For instance, when compared to the true

model’s prediction accuracy we observe an 8% accuracy drop for the s ¼ 1:0
network data and a 15% accuracy drop for the s ¼ 0:5 network data.

The second important result is that the logistic regression model’s prediction

accuracy on observed data is much improved when missing observations are

introduced. In fact, logistic regression outperforms both the MIRT model and the
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true generating model on the remaining—observed—data. (This improvement was

only seen in the dependent variable, not the covariates.) This striking increase in

accuracy is due to the way that we impute the missing values. The imputation

distribution Pðxi j y; xniÞ tends to favor values that make the observed outcomes y

more likely and minimize jð2y� 1Þ � Pðy j xÞj. As a result, prediction accuracy

increases when more observations are missing and the model over-fits the remaining

observed data.

The final important result that we observe from Table 4 is the poor prediction

accuracy on the missing observations. Compared to the MIRT model the accuracy

of predicting missing values drops approximately 25–35%. This striking difference

between the accuracy on the missing data and on the observed data is a clear

illustration of the poor cross-validation that follows from over-fitting on the

observed data points. This is particularly problematic when one aims to predict non-

observed data points, e.g., classification of future preferences: whereas one believes

to be doing quite a good job based on predictions of the observed data, one

unknowingly is doing a very poor job in predicting non-observed data.

5.7 Illustration III: Nonignorable missing data

From the results that are reported in Tables 2 and 3 we have learned that the two-

dimensional IRT model provides accurate predictions when applied to correlated

data where some of the observations are MCAR. Since there is no additional

difficulty for the case when the data are MAR instead of MCAR, we consider here

the situation where the IRT model is applied to data where the missing data

mechanism is nonignorable, i.e., not missing at random (NMAR; see Appendix A).

We compare situations where either the training data, the testing data, or both the

training data and the testing data have 50% data NMAR or 50% data MCAR.

We use several mechanisms to produce nonignorable missing data patterns, with

the missing data mechanism explicitly depending on the missing observations and/

or the parameters of the observed data model. In Appendix B we describe two

procedures, one of which produces missing data patterns that have a moderate effect

on observed correlations and parameter estimates—moderate nonignorability—and

one which produces missing data patterns that have a severe effect on observed

Table 4 Prediction accuracy

for the logistic regression model

applied to n ¼ 1000

observations of p ¼ 100

correlated variables (one

dependent and p� 1 covariates)

The missing observations are

missing completely at random

s ¼ 1:0 network data s ¼ 0:5 network data

Observed Missing % Observed Missing %

ctrue 80 – 0 91 – 0

ctrain 72 – 0 76 – 0

ctest 72 – 0 76 – 0

ctrain 92 59 50 92 55 50

ctest 94 59 50 93 55 50

ctrain 97 62 90 97 65 90

ctest 99 61 90 99 64 90
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correlations and parameter estimates—severe nonignorability. The effect of the two

described missing data mechanisms on the observed correlations is shown in Fig. 5a

for moderate nonignorability, and Fig. 5c for severe nonignorability. In Fig. 5b, d

we plot the corresponding estimates of u1, the first column of U, for the two

situations described by Fig. 5a, c, respectively, against the estimates that are

obtained from data where the missing observations are MCAR. Clearly, ignoring the

missing data mechanism produces bias to the estimates of u1, especially for the

severe nonignorability case.
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Fig. 5 The result of nonignorable missing data on observed correlations and parameter estimates. The
two panels on the left show the distribution of the observed correlations from data generated from a
s ¼ 1:0 network (black line), together with the observed correlations based on data subject to moderate
nonignorability (top-left panel; gray line) and data subject to severe nonignorability (bottom-left panel;
gray line). The two panels on the right show the estimates of u1, the first column of U, based on data that
are MCAR against the estimates based on data subject to moderate nonignorability (top-right panel) and
data subject to severe nonignorability (bottom-right panel)
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Table 5 reveals the prediction accuracy of the two-dimensional IRT model

applied to data generated from a s ¼ 1:0 network, with three distinct situations in

which either the training data, the test data, or both data sets have missing data

patterns that have a moderate effect on observed correlations,i.e., moderate

nonignorability. When we compare our predictions with the predictions that are

made with the true model Pðxi j xniÞ based on completely observed data, we see that

the prediction accuracy drops approximately: 3–4% when some of the training data

are NMAR and some of the testing data are NMAR, 4% when some training data

are NMAR but testing data only have data MCAR, and 1% when the training data

has data MCAR but the testing data have data NMAR. The 1% drop in accuracy that

is found when the training data have some observations MCAR is within the range

found for the complete data in Table 1 and data with observations MCAR in

Table 2. This suggests that training the prediction model on data for which the

missing data are missing at random does not threaten prediction accuracy. The

3–4% drop in accuracy that is found when training the model on data with

nonignorable missing data patterns is slightly higher than the range found for the

complete data and data with observations MCAR. Predictions about the missing

testing data are, on average, more accurate than that of the observed testing data,

whereas the opposite is found for the training data.

Table 6 reveals the prediction accuracy in the same situations as in Table 5, but

where the nonignorable missing data mechanism has a severe effect on the observed

correlations. When compared to predictions that are made by the true model Pðxi j
xniÞ based on complete data, we observe that the prediction accuracy drops

approximately: 7–8% when some of the training data are NMAR and some of the

testing data are NMAR, 8–9% when some training data are NMAR but testing data

only have data MCAR, and 1% when the training data have data MCAR but the

testing data have data NMAR. Thus, in comparison to the results reported in Table 5

for the missing data having a moderate effect on observed correlations, we have that

the drop in prediction accuracy is roughly doubled when training the model on data

Table 5 Prediction accuracy of

the two-dimensional IRT model

applied to s ¼ 1:0 network data

with moderate nonignorable

missingness

xtrain xtest n p ctrue c
ðoÞ
train c

ðmÞ
train c

ðoÞ
test c

ðmÞ
test

NMAR NMAR 100 1000 81 81 80 77 79

NMAR NMAR 100 100 81 81 79 77 78

NMAR NMAR 1000 100 81 79 79 78 79

NMAR NMAR 1000 1000 82 79 80 79 80

NMAR MCAR 100 1000 81 80 79 77 78

NMAR MCAR 100 100 80 80 77 75 76

NMAR MCAR 1000 100 80 77 77 76 77

NMAR MCAR 1000 1000 82 80 80 79 80

MCAR NMAR 100 1000 81 82 81 80 80

MCAR NMAR 100 100 80 81 78 78 78

MCAR NMAR 1000 100 81 80 80 80 80

MCAR NMAR 1000 1000 81 81 81 81 81
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subject to nonignorable missing data patterns. When the training data have data

NMAR, we see that predicting the missing testing data is about as difficult as

predicting the observed testing data. However, predicting the missing training data

is clearly more difficult than predicting the observed training data.

6 Discussion

We have illustrated that the combination of the Ising model and its latent variable

approximation can be used to overcome collinearity and missing data issues in

prediction applications of the logistic regression model. The prediction accuracy of

the latent variable model on the observed data compares favorably to the true model

used in Illustrations I–III (e.g., Fig. 2). The latent variable model was also able to

accurately predict the non-observed data points in Illustration II (e.g., Tables 2, 3)

and compares favorably to our illustration of the logistic regression model (e.g.,

Table 4). The model has its limits, which was clearly demonstrated in Illustration III

using nonignorable missing data mechanisms. The prediction accuracy deteriorates

when missing data mechanisms have a strong effect on the data that is used to train

the model (e.g., Tables 5, 6). However, even with the poor quality of the data that

were used to train the model in Illustration III, the prediction accuracy of the latent

variable model compares favorably to our application of the logistic regression

model (e.g., compare Tables 4 and 6). Therefore, we believe that our approach and

the associated latent variable model are superior to the logistic regression model in

prediction settings with correlated covariates and/or missing observations.

We have considered a specific prediction setting with only binary random

variables for our approach to overcome collinearity and missing data. Observe,

however, that the two primary ideas that form our approach are entirely general. The

first idea is to model the joint distribution of dependent and independent variables

when the variables are correlated, e.g., Ising networks models, Gaussian graphical

models (Lauritzen 1996), or mixtures thereof (Olkin and Tate 1961; Lauritzen and

Table 6 Prediction accuracy of

the two-dimensional IRT model

applied to s ¼ 1:0 network data

with severe nonignorable

missingness

xtrain xtest n p ctrue c
ðoÞ
train c

ðmÞ
train c

ðoÞ
test c

ðmÞ
test

NMAR NMAR 100 1000 81 82 65 72 73

NMAR NMAR 100 100 82 83 61 73 71

NMAR NMAR 1000 100 82 81 63 75 75

NMAR NMAR 1000 1000 81 81 64 76 75

NMAR MCAR 100 1000 81 82 64 72 73

NMAR MCAR 100 100 81 82 59 71 70

NMAR MCAR 1000 100 79 79 56 71 69

NMAR MCAR 1000 1000 81 81 64 75 74

MCAR NMAR 100 1000 81 82 81 80 80

MCAR NMAR 100 100 81 83 79 79 79

MCAR NMAR 1000 100 80 79 79 79 78

MCAR NMAR 1000 1000 81 81 81 81 81
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Wermuth 1989). A specific feature of these particular models is that they

specifically model the correlations between variables and thus overcome collinearity

issues in conditional regression models. However, the application of these models

will also increase the number of parameters that need to be estimated. Our second

idea is to approximate the full graphical model with a low-rank latent variable

model, e.g., an IRT model, a factor model or mixtures thereof. This has two

important benefits: it reduces the number of parameters that need to be estimated

and introduces an elegant way of handling missing data. We believe that these two

general ideas will inspire new avenues of future research and furthermore offer

practical solutions to issues that are widespread in large-scale applications.

The latent variables g in this paper are used to summarize the observed data in order

to make predictions. However, the latent variable, in combination with the model’s

parameters h ¼ fU;lg, can also be used to inform about the structure of the prediction

problem. For instance, in regular applications of IRTmodels to educational tests (e.g.,

an end of primary school test), the model informs about the dimensionality of the test

(e.g., separates a mathematics and language dimension) and informs how different

aspects of the test covary across the ability spectrum. In much the same way we may

study the latent variable model in prediction settings, which might improve the model

and its predictions. For example, in psychological data we nearly always observe a

pattern of positive correlations (in contrast to Fig. 3), which means that the entries in

the first eigenvector tend to have the same sign.Without much loss of accuracy we can

then replace the p unknown values in u1 with a single (positive) number. This would

significantly reduce the number of parameters that we need to estimate, and we obtain

sparse models that can make accurate predictions.
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Appendix A: Types of missing data

In many applications, some of the observations are missing (denoted xmis) and

models have to be trained on an incomplete dataset (denoted xobs). The missing

observations are referred to as missing at random (MAR) whenever the missing data

indicator M does not depend on the missing observations:

PMARðM ¼ m j xobs; xmis;/Þ ¼ PðM ¼ m j xobs;/Þ;

but may depend on the observed datapoints xobs. The missing data are referred to as

missing completely at random (MCAR) whenever the missing data mechanism does

not depend on any data, missing or observed:
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PMCARðM ¼ m j xobs; xmis;/Þ ¼ PðM ¼ m j /Þ:

Whenever the parameters / that govern the missing data mechanism are distinct

from the parameters that govern the observed data (here U, l and g), and the

missing data mechanism is MAR (or MCAR), the missing data mechanism can be

safely ignored without introducing bias to the estimates of U, l and g (Rubin 1976;

Little and Rubin 1987; Heitjan 1994). In a Bayesian framework distinctness refers

to the parameters / and U, l, and g being a priori independent:

f ð/; U; l;gÞ ¼ fð/ÞfðU; l;gÞ:

Whenever either of these two conditions (MAR and distinctness) are not satisfied,

the missing data are nonignorable and failure to correctly model the missing data

mechanism can bias the estimates of the observed data parameters (Rubin 1976;

Little and Rubin 1987; Heitjan 1994).

Appendix B: Generate nonignorable missing data

Moderate nonignorability

Moderately nonignorable missing data were created as follows: First, for each row

v, v ¼ 1; . . .; n, of the generated dataset x, a latent variable cv ¼ xTv u1 þ � was

created, where ��Nð0; 5Þ and where xTv U1 is the posterior expectation of g1v; the
correlation between the cv and g1v was approximately 0.6. We then cycle through

the consecutive column-pairs of the generated data matrix (i.e., (1, 2),

(2, 3),...,ðp� 1; pÞ, (p, 1)) and take one of three actions (with equal probability):

1. If the correlation of observations in columns i and j, with ði; jÞ 2 fð1; 2Þ,
(2, 3),. . .,ðp� 1; pÞ, ðp; 1Þg, was positive, we removed the observations in

column i, rows v, with probability ð1þ e�xvixvjÞ�1
, which is approximately 0.7

for observations xvi ¼ xvj ¼ �1. If the correlation was negative we removed

observations with probability ð1þ exvixvjÞ�1
to the same effect.

2. We randomly generated a value y 2 f0;1;2g and removed observations in

column i, rows v, with probability

PðMvi ¼ 1Þ ¼
ð1þ e�cvÞ�1

if y ¼ 0

ð1þ ecvÞ�1
if y ¼ 1

ð1þ ejcvjgÞ�1
if y ¼ 2

8
><

>:

favoring exclusion for large positive, large negative and moderate values of cv,
respectively.

3. Randomly remove 50% of the observations in column i.

The above procedure created approximately 35–40% missing observations, and

observations were either randomly omitted or placed back to make it an exact 50%.
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Severe nonignorability

Severely nonignorable missing data were created as follows: First, we cycled

through the consecutive column-pairs of the generated matrix (i.e., (1, 2),

(2, 3),...,ðp� 1; pÞ, (p, 1)). When the correlation between columns i and j was

positive we either removed all (1, 1) or ð�1;�1Þ observations, and when the

correlation was negative we removed either all ð1;�1Þ or ð�1; 1Þ observations. We

then cycled through the n rows of the generated matrix. For each row, we randomly

generated a value y 2 f0;1;2;3g. We removed 50% of the þ1 observations when y

equaled 0, 50% of the �1 observations when y equaled 1, removed 25% of the þ1

and 25% of the �1 responses if y equaled 2, and did nothing when y equaled 3. This

created approximately 50% missing observations, and observations were either

randomly omitted or placed back to make it an exact 50%.
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