49 research outputs found

    Analysis of Interband, Intraband, and Plasmon Polariton Transitions in Silver Nanoparticle Films Via In Situ Real-Time Spectroscopic Ellipsometry

    Get PDF
    The dielectric function of Ag nanoparticle films, deduced from an analysis of in situ real-time spectroscopic ellipsometry (RTSE) measurements, is found to evolve with time during deposition in close consistency with the film structure, deduced in the same RTSE analysis. In the nucleation regime, the intraband dielectric function component is absent and plasmon polariton behavior dominates. Only at nuclei contact, does the intraband amplitude appear, increasing above zero. Both intraband and plasmon amplitudes coexist during surface smoothening associated with coalescence. The intraband relaxation time increases rapidly after surface smoothening is complete, also in consistency with the thin film structural evolution

    Optical Detection of Melting Point Depression For Silver Nanoparticles Via In Situ Real Time Spectroscopic Ellipsometry

    Get PDF
    Silver nanoparticle films were deposited by sputtering at room temperature and were annealed while monitoring by real time spectroscopic ellipsometry (SE). The nanoparticle dielectric functions (0.75 eV-6.5 eV) obtained by SE were modeled using Lorentz and generalized oscillators for the nanoparticle plasmon polariton (NPP) and interband transitions, respectively. The nanoparticle melting point could be identified from variations in the oscillator parameters during annealing, and this identification was further confirmed after cooling through significant, irreversible changes in these parameters relative to the as-deposited film. The variation in melting point with physical thickness, and thus average nanoparticle diameter, as measured by SE enables calculation of the surface energy density

    Growth Analysis of (Ag,Cu)InSe2 Thin Films Via Real Time Spectroscopic Ellipsometry

    Get PDF
    In situ and ex situ characterization methods have been applied to investigate the properties of (Ag,Cu)InSe2 (ACIS) thin films. Data acquired from real time spectroscopic ellipsometry (RTSE) experiments were analyzed to extract the evolution of the nucleating, bulk, and surface roughness layer thicknesses. The evolution of these layer thicknesses suggests a transition from Volmer-Weber to Stranski-Krastanov type behavior when Cu is replaced by Ag. The complex dielectric functions of ACIS at both deposition and room temperature as a function of film composition were also extracted from the RTSE data, enabling parameterization of the alloy optical properties

    Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy

    Get PDF
    Indium selenide thin films have been grown on p-type gallium selenide single crystal substrates by van der Waals epitaxy. The use of two crucibles in the growth process has resulted in indium selenide films with physical properties closer to these of bulk indium selenide than those prepared by other techniques. The optical properties of the films have been studied by electroabsorption measurements. The band gap and its temperature dependence are very close to those of indium selenide single crystals. The width of the fundamental transition, even if larger than that of the pure single crystal material, decreases monotonously with temperature. Exciton peaks are not observed even at low temperature, which reveals that these layers still contain a large defect concentration. The current–voltage characteristic of indium selenide thin film devices was measured under simulated AM2 conditions. The solar conversion efficiency of these devices is lower than 0.6%. The high concentration of defects reduces the diffusion length of minority carriers down to values round to 0.2 μ[email protected] ; [email protected]

    Comprehensive Comparison of Various Techniques for the Analysis of Elemental Distributions in Thin Films

    Get PDF
    The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 μm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limit

    COVID-19 and the Global Impact on Colorectal Practice and Surgery

    Get PDF
    Background: The novel severe acute respiratory syndrome coronavirus 2 virus that emerged in December 2019 causing coronavirus disease 2019 (COVID-19) has led to the sudden national reorganization of health care systems and changes in the delivery of health care globally. The purpose of our study was to use a survey to assess the global effects of COVID-19 on colorectal practice and surgery. Materials and Methods: A panel of International Society of University Colon and Rectal Surgeons (ISUCRS) selected 22 questions, which were included in the questionnaire. The questionnaire was distributed electronically to ISUCRS fellows and other surgeons included in the ISUCRS database and was advertised on social media sites. The questionnaire remained open from April 16 to 28, 2020. Results: A total of 287 surgeons completed the survey. Of the 287 respondents, 90% were colorectal specialists or general surgeons with an interest in colorectal disease. COVID-19 had affected the practice of 96% of the surgeons, and 52% were now using telemedicine. Also, 66% reported that elective colorectal cancer surgery could proceed but with perioperative precautions. Of the 287 respondents, 19.5% reported that the use of personal protective equipment was the most important perioperative precaution. However, personal protective equipment was only provided by 9.1% of hospitals. In addition, 64% of surgeons were offering minimally invasive surgery. However, 44% reported that enough information was not available regarding the safety of the loss of intra-abdominal carbon dioxide gas during the COVID-19 pandemic. Finally, 61% of the surgeons were prepared to defer elective colorectal cancer surgery, with 29% willing to defer for ≤ 8 weeks. Conclusion: The results from our survey have demonstrated that, globally, COVID-19 has affected the ability of colorectal surgeons to offer care to their patients. We have also discussed suggestions for various practical adaptation strategies for use during the recovery period. We have presented the results of a survey used to assess the global impact of coronavirus disease 2019 (COVID-19) on the delivery of colorectal surgery. Despite accessible guidance information, our results have demonstrated that COVID-19 has significantly affected the ability of colorectal surgeons to offer care to patients. We have also discussed practical adaptation strategies for use during the recovery phase

    Scenario-Driven Supply Chain Charaterization Using a Multi-Dimensional Approach

    Get PDF
    Extreme disruptive events, such as the volcano eruption in Iceland, the Japanese tsunami, and the COVID-19 pandemic, as well as constant changes in customers’ needs and expectations, have forced supply chains to continuously adapt to new environments. Consequently, it is paramount to understand the supply chain characteristics for possible future scenarios, in order to know how to respond to threats and take advantage of the opportunities that the next years will bring. This chapter focuses on describing the characteristics of the supply chain in each of the six macro-scenarios presented in Sardesai et al. (2020b), as final stage of the scenario building methodology. Supply chains for each scenario are characterized in eight dimensions: Products and Services, Supply Chain Paradigm, Sourcing and Distribution, Technology Level, Supply Chain Configuration, Manufacturing Systems, Sales Channel, and Sustainability

    Optical and Electrical Properties of CuAlSe² Thin Films Obtained by Selenization of Cu/Al/Cu... Al/Cu Layers Sequentially Deposited

    No full text
    Optical and electrical properties of CuAlSe2 thin films obtained by selenization of Cu/Al/Cu...Al/Cu layers sequentially deposited have been investigated. It is shown that the expected energy gap (2.67 eV) is measured for well crystallized films, whereas a slightly higher value is measured for films not so well crystallized. Raman diffusion also shows differences between well and poorly crystallized films with peaks corresponding to the reference powder for the former samples. A p-type conductivity is found whatever the crystalline quality of the samples. The conductivity of the films depends also strongly on their crystalline properties. When the films are badly crystallized their conductivity is controlled by highly disordered domains at the grain boundaries. When the films are well crystallized with (112) texturation the room temperature conductivity of the films is three orders of magnitude higher than that of poorly crystallized films. Moreover, in the high temperature range, the different domains of the plot ln (σ) versus (1/T) can be understood by using single crystal models, which demonstrates the high crystalline quality of the films. In the lower temperature range, the conductivity is governed by grain boundary scattering mechanisms
    corecore