2,137 research outputs found
Hemispheric Asymmetry of Globus Pallidus Explains Reward-related Posterior Alpha Modulation in Humans
While subcortical structures such as the basal ganglia (BG) have been widely explored in relation to motor control, recent evidence suggests that their mechanisms extend to the domain of attentional switching. We here investigated the subcortical involvement in reward related top-down control of visual alpha-band oscillations (8 â 13 Hz), which have been consistently linked to the mechanisms supporting the allocation of visual spatial attention. Given that items associated with contextual saliency (e.g. monetary reward or loss) attract attention, it is not surprising that alpha oscillations are further modulated by the saliency properties of the visual items. The executive network controlling such reward-dependent modulations of oscillatory brain activity has yet to be fully elucidated. Although such network has been explored in terms of cortico-cortical interaction, it likely relies also on the contribution of subcortical regions. To uncover this, we investigated whether derived measures of subcortical structural asymmetries could predict interhemispheric modulation of alpha power during a spatial attention task. We show that volumetric hemispheric lateralization of globus pallidus (GP) and thalamus (Th) explains individual hemispheric biases in the ability to modulate posterior alpha power. Importantly, for the GP, this effect became stronger when the value-saliency parings in the task increased. Our findings suggest that the Th and GP in humans are part of a subcortical executive control network, differently involved in modulating posterior alpha activity. Further investigation aimed at uncovering the interaction between subcortical and neocortical attentional networks would provide useful insight in future studies
Occipital Alpha and Gamma Oscillations Support Complementary Mechanisms for Processing Stimulus Value Associations.
Selective attention is reflected neurally in changes in the power of posterior neural oscillations in the alpha (8â12 Hz) and gamma (40â100 Hz) bands. Although a neural mechanism that allows relevant information to be selectively processed has its advantages, it may lead to lucrative or dangerous information going unnoticed. Neural systems are also in place for processing rewarding and punishing information. Here, we examine the interaction between selective attention (left vs. right) and stimulus's learned value associations (neutral, punished, or rewarded) and how they compete for control of posterior neural oscillations. We found that both attention and stimulusâvalue associations influenced neural oscillations. Whereas selective attention had comparable effects on alpha and gamma oscillations, value associations had dissociable effects on these neural markers of attention. Salient targets (associated with positive and negative outcomes) hijacked changes in alpha powerâincreasing hemispheric alpha lateralization when salient targets were attended, decreasing it when they were being ignored. In contrast, hemispheric gamma-band lateralization was specifically abolished by negative distractors. Source analysis indicated occipital generators of both attentional and value effects. Thus, posterior cortical oscillations support both the ability to selectively attend while at the same time retaining the ability to remain sensitive to valuable features in the environment. Moreover, the versatility of our attentional system to respond separately to salient from merely positively valued stimuli appears to be carried out by separate neural processes reflected in different frequency bands
Recommended from our members
A new Mississippian tetrapod from Fife, Scotland, and its environmental context.
The Visean stage of the Mississippian was a time of rapid tetrapod diversification which marks the earliest appearance of temnospondyls, microsaurs and the limbless aĂŻstopods. Tetrapod finds from this stage are very rare and only a dozen sites are known worldwide. Here we announce the discovery of a new Visean site in Fife, Scotland, of Asbian age, and from it describe a new species of the baphetoid Spathicephalus. These specimens represent the oldest known baphetoid by three million years, yet belong to the most specialized members of the clade. Unlike typical baphetoids with large marginal teeth and palatal fangs characteristic of early tetrapods, spathicephalids had very broad flattened heads with a dentition consisting of a large number of small, uniform teeth. Spathicephalids were probably one of the earliest tetrapod groups to use suction feeding on small, aquatic prey. Palynological and sedimentological analysis indicates that the new fossil bed was deposited in a large, stratified, freshwater lake that became increasingly saline.Natural Environment Research Council. Grant Numbers: NE/J020621/1, NE/J020729/1, NE/J021091/1, NE/J022713/1, NEJ021067/
Cliophysics: Socio-political Reliability Theory, Polity Duration and African Political (In)stabilities
Quantification of historical sociological processes have recently gained
attention among theoreticians in the effort of providing a solid theoretical
understanding of the behaviors and regularities present in sociopolitical
dynamics. Here we present a reliability theory of polity processes with
emphases on individual political dynamics of African countries. We found that
the structural properties of polity failure rates successfully capture the risk
of political vulnerability and instabilities in which 87.50%, 75%, 71.43%, and
0% of the countries with monotonically increasing, unimodal, U-shaped and
monotonically decreasing polity failure rates, respectively, have high level of
state fragility indices. The quasi-U-shape relationship between average polity
duration and regime types corroborates historical precedents and explains the
stability of the autocracies and democracies.Comment: 4 pages, 3 figures, 1 tabl
Personalisation and recommender systems in digital libraries
Widespread use of the Internet has resulted in digital libraries that are increasingly used by diverse communities of users for diverse purposes and in which sharing and collaboration have become important social elements. As such libraries become commonplace, as their contents and services become more varied, and as their patrons become more experienced with computer technology, users will expect more sophisticated services from these libraries. A simple search function, normally an integral part of any digital library, increasingly leads to user frustration as user needs become more complex and as the volume of managed information increases. Proactive digital libraries, where the library evolves from being passive and untailored, are seen as offering great potential for addressing and overcoming these issues and include techniques such as personalisation and recommender systems. In this paper, following on from the DELOS/NSF Working Group on Personalisation and Recommender Systems for Digital Libraries, which met and reported during 2003, we present some background material on the scope of personalisation and recommender systems in digital libraries. We then outline the working groupâs vision for the evolution of digital libraries and the role that personalisation and recommender systems will play, and we present a series of research challenges and specific recommendations and research priorities for the field
Astronomical Spectroscopy
Spectroscopy is one of the most important tools that an astronomer has for
studying the universe. This chapter begins by discussing the basics, including
the different types of optical spectrographs, with extension to the ultraviolet
and the near-infrared. Emphasis is given to the fundamentals of how
spectrographs are used, and the trade-offs involved in designing an
observational experiment. It then covers observing and reduction techniques,
noting that some of the standard practices of flat-fielding often actually
degrade the quality of the data rather than improve it. Although the focus is
on point sources, spatially resolved spectroscopy of extended sources is also
briefly discussed. Discussion of differential extinction, the impact of
crowding, multi-object techniques, optimal extractions, flat-fielding
considerations, and determining radial velocities and velocity dispersions
provide the spectroscopist with the fundamentals needed to obtain the best
data. Finally the chapter combines the previous material by providing some
examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and
Stellar Systems, to be published in 2011 by Springer. Slightly revise
Coping with Commitment: Projected Thermal Stress on Coral Reefs under Different Future Scenarios
BACKGROUND: Periods of anomalously warm ocean temperatures can lead to mass coral bleaching. Past studies have concluded that anthropogenic climate change may rapidly increase the frequency of these thermal stress events, leading to declines in coral cover, shifts in the composition of corals and other reef-dwelling organisms, and stress on the human populations who depend on coral reef ecosystems for food, income and shoreline protection. The ability of greenhouse gas mitigation to alter the near-term forecast for coral reefs is limited by the time lag between greenhouse gas emissions and the physical climate response. METHODOLOGY/PRINCIPAL FINDINGS: This study uses observed sea surface temperatures and the results of global climate model forced with five different future emissions scenarios to evaluate the "committed warming" for coral reefs worldwide. The results show that the physical warming commitment from current accumulation of greenhouse gases in the atmosphere could cause over half of the world's coral reefs to experience harmfully frequent (p> or =0.2 year(-1)) thermal stress by 2080. An additional "societal" warming commitment, caused by the time required to shift from a business-as-usual emissions trajectory to a 550 ppm CO(2) stabilization trajectory, may cause over 80% of the world's coral reefs to experience harmfully frequent events by 2030. Thermal adaptation of 1.5 degrees C would delay the thermal stress forecast by 50-80 years. CONCLUSIONS/SIGNIFICANCE: The results suggest that adaptation -- via biological mechanisms, coral community shifts and/or management interventions -- could provide time to change the trajectory of greenhouse gas emissions and possibly avoid the recurrence of harmfully frequent events at the majority (97%) of the world's coral reefs this century. Without any thermal adaptation, atmospheric CO(2) concentrations may need to be stabilized below current levels to avoid the degradation of coral reef ecosystems from frequent thermal stress events
Genetic analysis of male reproductive success in relation to density in the zebrafish, Danio rerio
BACKGROUND: We used behavioural and genetic data to investigate the effects of density on male reproductive success in the zebrafish, Danio rerio. Based on previous measurements of aggression and courtship behaviour by territorial males, we predicted that they would sire more offspring than non-territorial males. RESULTS: Microsatellite analysis of paternity showed that at low densities territorial males had higher reproductive success than non-territorial males. However, at high density territorial males were no more successful than non-territorials and the sex difference in the opportunity for sexual selection, based on the parameter I(mates), was low. CONCLUSION: Male zebrafish exhibit two distinct mating tactics; territoriality and active pursuit of females. Male reproductive success is density dependent and the opportunity for sexual selection appears to be weak in this species
A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma.
© 2014 Haider et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.Improved usage of the repertoires of pancreatic ductal adenocarcinoma (PDAC) profiles is crucially needed to guide the development of predictive and prognostic tools that could inform the selection of treatment options
Beyond Gross-Pitaevskii Mean Field Theory
A large number of effects related to the phenomenon of Bose-Einstein
Condensation (BEC) can be understood in terms of lowest order mean field
theory, whereby the entire system is assumed to be condensed, with thermal and
quantum fluctuations completely ignored. Such a treatment leads to the
Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although
this theory works remarkably well for a broad range of experimental parameters,
a more complete treatment is required for understanding various experiments,
including experiments with solitons and vortices. Such treatments should
include the dynamical coupling of the condensate to the thermal cloud, the
effect of dimensionality, the role of quantum fluctuations, and should also
describe the critical regime, including the process of condensate formation.
The aim of this Chapter is to give a brief but insightful overview of various
recent theories, which extend beyond the GPE. To keep the discussion brief,
only the main notions and conclusions will be presented. This Chapter
generalizes the presentation of Chapter 1, by explicitly maintaining
fluctuations around the condensate order parameter. While the theoretical
arguments outlined here are generic, the emphasis is on approaches suitable for
describing single weakly-interacting atomic Bose gases in harmonic traps.
Interesting effects arising when condensates are trapped in double-well
potentials and optical lattices, as well as the cases of spinor condensates,
and atomic-molecular coupling, along with the modified or alternative theories
needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear
Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by
P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer
Verlag
- âŠ