14 research outputs found

    Recovery kinetics of knee flexor and extensor strength after a football match

    Get PDF
    © 2015 The Authors. Published by PLOS. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pone.0128072We examined the temporal changes of isokinetic strength performance of knee flexor (KF) and extensor (KE) strength after a football match. Players were randomly assigned to a control (N = 14, participated only in measurements and practices) or an experimental group (N = 20, participated also in a football match). Participants trained daily during the two days after the match. Match and training overload was monitored with GPS devices. Venous blood was sampled and muscle damage was assessed pre-match, post-match and at 12h, 36h and 60h post-match. Isometric strength as well as eccentric and concentric peak torque of knee flexors and extensors in both limbs (dominant and non-dominant) were measured on an isokinetic dynamometer at baseline and at 12h, 36h and 60h after the match. Functional (KFecc/KEcon) and conventional (KFcon/KEcon) ratios were then calculated. Only eccentric peak torque of knee flexors declined at 60h after the match in the control group. In the experimental group: a) isometric strength of knee extensors and knee flexors declined (P<0.05) at 12h (both limbs) and 36h (dominant limb only), b) eccentric and concentric peak torque of knee extensors and flexors declined (P<0.05) in both limbs for 36h at 60°/s and for 60h at 180°/s with eccentric peak torque of knee flexors demonstrating a greater (P<0.05) reduction than concentric peak torque, c) strength deterioration was greater (P<0.05) at 180°/s and in dominant limb, d) the functional ratio was more sensitive to match-induced fatigue demonstrating a more prolonged decline. Discriminant and regression analysis revealed that strength deterioration and recovery may be related to the amount of eccentric actions performed during the match and athletes' football-specific conditioning. Our data suggest that recovery kinetics of knee flexor and extensor strength after a football match demonstrate strength, limb and velocity specificity and may depend on match physical overload and players' physical conditioning level.Published versio

    Mechanistic Insights into the Efficacy of Sodium Bicarbonate Supplementation to Improve Athletic Performance

    Get PDF
    A large proportion of empirical research and reviews investigating the ergogenic potential of sodium bicarbonate (NaHCO3) supplementation have focused predominately on performance outcomes and only speculate about underlying mechanisms responsible for any benefit. The aim of this review was to critically evaluate the influence of NaHCO3 supplementation on mechanisms associated with skeletal muscle fatigue as it translates directly to exercise performance. Mechanistic links between skeletal muscle fatigue, proton accumulation (or metabolic acidosis) and NaHCO3 supplementation have been identified to provide a more targeted, evidence-based approach to direct future research, as well as provide practitioners with a contemporary perspective on the potential applications and limitations of this supplement. The mechanisms identified have been broadly categorised under the sections 'Whole-body Metabolism', 'Muscle Physiology' and 'Motor Pathways', and when possible, the performance outcomes of these studies contextualized within an integrative framework of whole-body exercise where other factors such as task demand (e.g. large vs. small muscle groups), cardio-pulmonary and neural control mechanisms may outweigh any localised influence of NaHCO3. Finally, the 'Performance Applications' section provides further interpretation for the practitioner founded on the mechanistic evidence provided in this review and other relevant, applied NaHCO3 performance-related studies

    Comparative Study of Laptops and Touch-Screen PCs for Searching on the Web

    No full text
    This study compares the use of a laptop versus a touch-screen PC to perform web-based information search tasks. Thirty-six participants took part in a lab-based experiment. They were asked to use either a laptop or a touch-screen PC to seek information on the web and retrieve relevant pieces of information while their sessions were recorded. Cognitive load was measured through eyerelated data and cortical activity (EEG) along with a self-reported scale. Main results indicated that participants who used the laptop outperformed those who used the touch-screen PC, with more relevant webpages bookmarked (F = 9.678, p = .004) and more relevant elements retrieved (F = 6.302, p = .018). Participants with the touch-screen PC also spent more time on each webpage than their counterparts (F = 9.2141, p = .005). These results suggest that using the touch-screen PC required more mental effort, which is supported by cognitive load measurements. Linear mixed-model analyses showed significant differences across devices in both pupil size variation (F = 3.692, p = .05) and EEG-based cognitive load index (F = 5.181, p = .028). This study raises issues about whether touchscreen computers are suited for every computing needs.SCOPUS: cp.kinfo:eu-repo/semantics/publishe
    corecore