40,800 research outputs found
Nonlinear Dynamics of Particles Excited by an Electric Curtain
The use of the electric curtain (EC) has been proposed for manipulation and
control of particles in various applications. The EC studied in this paper is
called the 2-phase EC, which consists of a series of long parallel electrodes
embedded in a thin dielectric surface. The EC is driven by an oscillating
electric potential of a sinusoidal form where the phase difference of the
electric potential between neighboring electrodes is 180 degrees. We
investigate the one- and two-dimensional nonlinear dynamics of a particle in an
EC field. The form of the dimensionless equations of motion is codimension two,
where the dimensionless control parameters are the interaction amplitude ()
and damping coefficient (). Our focus on the one-dimensional EC is
primarily on a case of fixed and relatively small , which is
characteristic of typical experimental conditions. We study the nonlinear
behaviors of the one-dimensional EC through the analysis of bifurcations of
fixed points. We analyze these bifurcations by using Floquet theory to
determine the stability of the limit cycles associated with the fixed points in
the Poincar\'e sections. Some of the bifurcations lead to chaotic trajectories
where we then determine the strength of chaos in phase space by calculating the
largest Lyapunov exponent. In the study of the two-dimensional EC we
independently look at bifurcation diagrams of variations in with fixed
and variations in with fixed . Under certain values of
and , we find that no stable trajectories above the surface exists;
such chaotic trajectories are described by a chaotic attractor, for which the
the largest Lyapunov exponent is found. We show the well-known stable
oscillations between two electrodes come into existence for variations in
and the transitions between several distinct regimes of stable motion for
variations in
Effects of Enamel Paint on the Behavior and Survival of the Periodical Cicada, \u3ci\u3eMagicicada Septendecim\u3c/i\u3e (Homoptera) and the Lesser Migratory Grasshopper, \u3ci\u3eMelanoplus Sanguinipes (Orthoptera).
We present information compiled from several studies on the effects of methods for marking individual arthropods on their longevity and behavior. Results from our own research on effects of enamel paint marking on two in- sect species, the periodical cicada, Magicicada septendecim, and the lesser migratory grasshopper, Melanoplus sanguinipes, are also presented. Neither species showed any adverse survivorship or behavioral effects from marking
Bounding inconsistency using a novel threshold metric for dead reckoning update packet generation
Human-to-human interaction across distributed applications requires that sufficient consistency be maintained among participants in the face of network characteristics such as latency and limited bandwidth. The level of inconsistency arising from the network is proportional to the network delay, and thus a function of bandwidth consumption. Distributed simulation has often used a bandwidth reduction technique known as dead reckoning that combines approximation and estimation in the communication of entity movement to reduce network traffic, and thus improve consistency. However, unless carefully tuned to application and network characteristics, such an approach can introduce more inconsistency than it avoids. The key tuning metric is the distance threshold. This paper questions the suitability of the standard distance threshold as a metric for use in the dead reckoning scheme. Using a model relating entity path curvature and inconsistency, a major performance related limitation of the distance threshold technique is highlighted. We then propose an alternative time—space threshold criterion. The time—space threshold is demonstrated, through simulation, to perform better for low curvature movement. However, it too has a limitation. Based on this, we further propose a novel hybrid scheme. Through simulation and live trials, this scheme is shown to perform well across a range of curvature values, and places bounds on both the spatial and absolute inconsistency arising from dead reckoning
Exploring the use of local consistency measures as thresholds for dead reckoning update packet generation
Human-to-human interaction across distributed applications requires that sufficient consistency be maintained among participants in the face of network characteristics such as latency and limited bandwidth. Techniques and approaches for reducing bandwidth usage can minimize network delays by reducing the network traffic and therefore better exploiting available bandwidth. However, these approaches induce inconsistencies within the level of human perception. Dead reckoning is a well-known technique for reducing the number of update packets transmitted between participating nodes. It employs a distance threshold for deciding when to generate update packets. This paper questions the use of such a distance threshold in the context of absolute consistency and it highlights a major drawback with such a technique. An alternative threshold criterion based on time and distance is examined and it is compared to the distance only threshold. A drawback with this proposed technique is also identified and a hybrid threshold criterion is then proposed. However, the trade-off between spatial and temporal inconsistency remains
X-ray Emission from the 3C 273 Jet
We present results from four recent Chandra monitoring observations of the
jet in 3C 273 using the ACIS detector, obtained between November 2003 and July
2004. We find that the X-ray emission comes in two components: unresolved knots
that are smaller than the corresponding optically emitting knots and a broad
channel that is about the same width as the optical interknot region. We
compute the jet speed under the assumption that the X-ray emission is due to
inverse Compton scattering of the cosmic microwave background, finding that the
dimming of the jet X-ray emission to the jet termination relative to the radio
emission may be due to bulk deceleration.Comment: 2 pages, 2 figures, to appear in the proceedings of "The X-ray
Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200
Gratings photowritten in ion-exchanged glass channel waveguides
Gratings are photowritten in ion-exchanged glass channel waveguides. The transmission of these waveguides shows a rejection dip of almost 20dB. The polarisation dependence of these waveguide gratings is measured and discussed
Grating formation in BGG31 glass by UV exposure
A three-dimensional index variation grating in bulk BGG31 glass written using neither hydrogen loading nor germanium doping is demonstrated. This material is useful for fabricating ion-exchanged waveguides, and its photosensitivity to ultraviolet (UV) radiation at 248nm has not been previously explored. Intensity measurements of the Bragg diffracted spots indicated a maximum index variation (Delta n) of similar to 4 x 10(-5)
Recommended from our members
Psychological distress after stroke and aphasia: the first six months
Objective: We explored the factors that predicted psychological distress in the first six months post stroke in a sample including people with aphasia.
Design: Prospective longitudinal observational study.
Setting and subjects: Participants with a first stroke from two acute stroke units were assessed while still in hospital (baseline) and at three and six months post stroke.
Main measures: Distress was assessed with the General Health Questionnaire-12. Other measures included: NIH Stroke Scale, Barthel Index, Frenchay Aphasia Screening Test, Frenchay Activities Index, MOS Social Support Scale and social network indicators. Logistic regression was used to identify predictors of distress at each stage post stroke; and to determine what baseline factors predicted distress at six months.
Results: Eighty-seven participants were able to self-report on measures used, of whom 32 (37%) had aphasia. 71 (82%) were seen at six months, including 11 (16%) with aphasia. Predictors of distress were: stroke severity at baseline; low social support at three months; and loneliness and low satisfaction with social network at six months. The baseline factors that predicted distress at six months were psychological distress, loneliness and low satisfaction with social network (Nagelkerke R2 = 0.49). Aphasia was not a predictor of distress at any time point. Yet, at three months post stroke 93% of those with aphasia experienced high distress, as opposed to 50% of those without aphasia (χ2 (1) = 8.61, P<0.01).
Conclusions: Factors contributing to distress after stroke vary across time. Loneliness and low satisfaction with one’s social network are particularly important and contribute to long-term psychological distress
Bearing tester data compilation, analysis and reporting and bearing math modeling, volume 1
Thermal and mechanical models of high speed angular contact ball bearings operating in LOX and LN2 were developed and verified with limited test data in an effort to further understand the parameters that determine or effect the SSME turbopump bearing operational characteristics and service life. The SHABERTH bearing analysis program which was adapted to evaluate shaft bearing systems in cryogenics is not capable of accommodating varying thermal properties and two phase flow. A bearing model with this capability was developed using the SINDA thermal analyzer. Iteration between the SHABERTH and the SINDA models enable the establishment of preliminary bounds for stable operation in LN2. These limits were established in terms of fluid flow, fluid inlet temperature, and axial load for a shaft speed of 30,000 RPM
Extended duration orbiter study: CO2 removal and water recovery
Two electrochemical depolarized carbon dioxide concentrator subsystems were evaluated against baseline lithium hydroxide for (1) the baseline orbiter when expanded to accommodate a crew of seven (mission option one), (2) an extended duration orbiter with a power extension package to reduce fuel cell expendables (mission option two), and (3) an extended duration orbiter with a full capability power module to eliminate fuel cell expendables (mission option three). The electrochemical depolarized carbon dioxide concentrator was also compared to the solid amine regenerable carbon dioxide removal concept. Water recovery is not required for Mission Option One since sufficient water is generated by the fuel cells. The vapor compression distillation subsystem was evaluated for mission option two and three only. Weight savings attainable using the vapor compression distillation subsystem for water recovery versus on-board water storage were determined. Combined carbon dioxide removal and water recovery was evaluated to determine the effect on regenerable carbon dioxide removal subsystem selection
- …