152 research outputs found

    Assessing the Forms and Functions of Aggression Using Self-Report: Factor Structure and Invariance of the Peer Conflict Scale in Youths

    Get PDF
    This study examined the structure of a self-report measure of the forms and functions of aggression in 855 adolescents (582 boys, 266 girls) aged 12 to 19 years recruited from high school, detained, and residential settings. The Peer Conflict Scale (PCS) is a 40-item measure that was developed to improve upon existing measures and provide an efficient, reliable, and valid assessment of four dimensions of aggression (i.e., reactive overt, reactive relational, proactive overt, and proactive relational) in youths. Confirmatory factor analyses showed that a 4-factor model represented a satisfactory solution for the data. The factor structure fit well for both boys and girls and across high school, detained, and residential samples. Internal consistency estimates were good for the 4 factors, and they showed expected associations with externalizing variables (i.e., arrest history, callous-unemotional traits, and delinquency). Reactive and proactive subtypes showed unique associations consistent with previous literature. Implications for the use of the PCS to assess aggression and inform intervention decisions in diverse samples of youths are discussed

    Natural Disaster and Risk of Psychiatric Disorders in Puerto Rican Children

    Get PDF
    We examined the persistence of psychiatric disorders at approximately 18 and 30 months after a hurricane among a random sample of the child and adolescent population (4–17 years) of Puerto Rico. Data were obtained from caretaker-child dyads (N = 1,886) through in person interviews with primary caretakers (all children) and youth (11–17 years) using the Diagnostic Interview Schedule for Children IV in Spanish. Logistic regressions, controlling for sociodemographic variables, were used to study the relation between disaster exposure and internalizing, externalizing, or any disorder. Children’s disaster-related distress manifested as internalizing disorders, rather than as externalizing disorders at 18 months post-disaster. At 30 months, there was no longer a significant difference in rates of disorder between hurricane-exposed and non-exposed youth. Results were similar across age ranges. Rates of specific internalizing disorders between exposed and unexposed children are provided. Research and clinical implications are discussed

    Precision measurement of the index of refraction of deep glacial ice at radio frequencies at Summit Station, Greenland

    Full text link
    Glacial ice is used as a target material for the detection of ultra-high energy neutrinos, by measuring the radio signals that are emitted when those neutrinos interact in the ice. Thanks to the large attenuation length at radio frequencies, these signals can be detected over distances of several kilometers. One experiment taking advantage of this is the Radio Neutrino Observatory Greenland (RNO-G), currently under construction at Summit Station, near the apex of the Greenland ice sheet. These experiments require a thorough understanding of the dielectric properties of ice at radio frequencies. Towards this goal, calibration campaigns have been undertaken at Summit, during which we recorded radio reflections off internal layers in the ice sheet. Using data from the nearby GISP2 and GRIP ice cores, we show that these reflectors can be associated with features in the ice conductivity profiles; we use this connection to determine the index of refraction of the bulk ice as n=1.778 +/- 0.006

    Real-Time Monitoring of Tumorigenesis, Dissemination, & Drug Response in a Preclinical Model of Lymphangioleiomyomatosis/Tuberous Sclerosis Complex

    Get PDF
    Background: TSC2-deficient cells can proliferate in the lungs, kidneys, and other organs causing devastating progressive multisystem disorders such as lymphangioleiomyomatosis (LAM) and tuberous sclerosis complex (TSC). Preclinical models utilizing LAM patient-derived cells have been difficult to establish. We developed a novel animal model system to study the molecular mechanisms of TSC/LAM pathogenesis and tumorigenesis and provide a platform for drug testing. Methods and Findings: TSC2-deficient human cells, derived from the angiomyolipoma of a LAM patient, were engineered to co-express both sodium-iodide symporter (NIS) and green fluorescent protein (GFP). Cells were inoculated intraparenchymally, intravenously, or intratracheally into athymic NCr nu/nu mice and cells were tracked and quantified using single photon emission computed tomography (SPECT) and computed tomography (CT). Surprisingly, TSC2-deficient cells administered intratracheally resulted in rapid dissemination to lymph node basins throughout the body, and histopathological changes in the lung consistent with LAM. Estrogen was found to be permissive for tumor growth and dissemination. Rapamycin inhibited tumor growth, but tumors regrew after the drug treatment was withdrawn. Conclusions: We generated homogeneous NIS/GFP co-expressing TSC2-deficient, patient-derived cells that can proliferate and migrate in vivo after intratracheal instillation. Although the animal model we describe has some limitations, we demonstrate that systemic tumors formed from TSC2-deficient cells can be monitored and quantified noninvasively over time using SPECT/CT, thus providing a much needed model system for in vivo drug testing and mechanistic studies of TSC2-deficient cells and their related clinical syndromes

    Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-Energy Tracks: An 11-Year Analysis

    Full text link
    IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 years of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of ≥0.5\geq 0.5 to be of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events' error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS~0506+056, with a local significance of 3σ 3 \sigma, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.1560.156 and is compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100~TeV to be below 1.2×10−151.2 \times 10^{-15}~(TeV cm2^2 s)−1^{-1} at 90% confidence assuming an E−2E^{-2} spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux. Overall, we find no indication that alert events, in general, are linked to lower-energetic continuous or transient neutrino emission.Comment: Accepted by Ap

    Acceptance Tests of more than 10 000 Photomultiplier Tubes for the multi-PMT Digital Optical Modules of the IceCube Upgrade

    Get PDF
    More than 10 000 photomultiplier tubes (PMTs) with a diameter of 80 mm will be installed in multi-PMT Digital Optical Modules (mDOMs) of the IceCube Upgrade. These have been tested and pre-calibrated at two sites. A throughput of more than 1000 PMTs per week with both sites was achieved with a modular design of the testing facilities and highly automated testing procedures. The testing facilities can easily be adapted to other PMTs, such that they can, e.g., be re-used for testing the PMTs for IceCube-Gen2. Single photoelectron response, high voltage dependence, time resolution, prepulse, late pulse, afterpulse probabilities, and dark rates were measured for each PMT. We describe the design of the testing facilities, the testing procedures, and the results of the acceptance tests

    Search for joint multimessenger signals from potential Galactic PeVatrons with HAWC and IceCube

    Full text link
    Galactic PeVatrons are sources that can accelerate cosmic rays to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding ambient material or radiation, resulting in the production of gamma rays and neutrinos. To optimize for the detection of such associated production of gamma rays and neutrinos for a given source morphology and spectrum, a multi-messenger analysis that combines gamma rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework (3ML) with IceCube Maximum Likelihood Analysis software (i3mla) and HAWC Accelerated Likelihood (HAL) to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 years of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that the gamma-ray emission from five of the sources can not be produced purely from hadronic interactions. We report the limit for the fraction of gamma rays produced by hadronic interactions for these five sources

    Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing

    Get PDF
    We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011–2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm232=2.41±0.07×10−3  eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties

    Psychopathic Traits of Dutch Adolescents in Residential Care: Identifying Subgroups

    Get PDF
    The present study examined whether a sample of 214 (52.8% male, M age = 15.76, SD = 1.29) institutionalized adolescents could be classified into subgroups based on psychopathic traits. Confirmatory Factor Analyses revealed a relationship between the subscales of the Youth Psychopathic traits Inventory (YPI) and the three latent constructs of the original model on which it is based. Latent Class Analyses showed that adolescents showing psychopathic traits could be classified into three subgroups. The first group showed low scores on the grandiose/manipulative dimension, the callous/unemotional dimension, and the impulsive/irresponsible dimension (normal group). The second group scored moderate on the grandiose/manipulative dimension and the callous/unemotional dimension and high on the impulsive/irresponsible dimension (impulsive, non-psychopathic-like group). The third group scored high on all three dimensions (psychopathy-like group). The findings revealed that the impulsive, non-psychopathic like group scored significantly higher on internalizing problem behavior compared to the normal group, while the psychopathy-like and the impulsive, non-psychopathic-like group both scored higher on externalizing problem behavior compared to the normal group. Based on a self-report delinquency measure, it appeared that the psychopathy-like group had the highest delinquency rates, except for vandalism. Both the impulsive and psychopathy-like group had the highest scores on the use of soft drugs

    Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory

    Get PDF
    The IceCube Neutrino Observatory has been continuously taking data to search for ( – )0.5 10 s long neutrino bursts since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of exploding, it will be detectable via the ( )10 MeV neutrino burst emitted during the collapse. We discuss a search for such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an 8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc was determined to be 0.23 yr−1 . For the more distant Magellanic Clouds, only high neutrino luminosity supernovae will be detectable by IceCube, unless external information on the burst time is available. We determined a model- independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum
    • …
    corecore