4,922 research outputs found

    Variational Multisymplectic Formulations of Nonsmooth Continuum Mechanics

    Get PDF
    This paper develops the foundations of the multisymplectic formulation of nonsmooth continuum mechanics. It may be regarded as a PDE generalization of previous techniques that developed a variational approach to collision problems. These methods have already proved of value in computational mechanics, particularly in the development of asynchronous integrators and efficient collision methods. The present formulation also includes solid-fluid interactions and material interfaces and, in addition, lays the groundwork for a treatment of shocks

    Nonsmooth Lagrangian mechanics and variational collision integrators

    Get PDF
    Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for collisions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum conservation theorem. Discretizations of this nonsmooth mechanics are developed by using the methodology of variational discrete mechanics. This leads to variational integrators which are symplectic-momentum preserving and are consistent with the jump conditions given in the continuous theory. Specific examples of these methods are tested numerically, and the long-time stable energy behavior typical of variational methods is demonstrated

    Discrete Routh Reduction

    Get PDF
    This paper develops the theory of abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J2J_2 correction, as well as the double spherical pendulum. The J2J_2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a nontrivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the noncanonical nature of the symplectic structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added, fixed typo

    Invariant Lagrangians, mechanical connections and the Lagrange-Poincare equations

    Get PDF
    We deal with Lagrangian systems that are invariant under the action of a symmetry group. The mechanical connection is a principal connection that is associated to Lagrangians which have a kinetic energy function that is defined by a Riemannian metric. In this paper we extend this notion to arbitrary Lagrangians. We then derive the reduced Lagrange-Poincare equations in a new fashion and we show how solutions of the Euler-Lagrange equations can be reconstructed with the help of the mechanical connection. Illustrative examples confirm the theory.Comment: 22 pages, to appear in J. Phys. A: Math. Theor., D2HFest special issu

    A millimeter-wave antireflection coating for cryogenic silicon lenses

    Get PDF
    We have developed and tested an antireflection (AR) coating method for silicon lenses at cryogenic temperatures and millimeter wavelengths. Our particular application is a measurement of the cosmic microwave background. The coating consists of machined pieces of Cirlex glued to the silicon. The measured reflection from an AR coated flat piece is less than 1.5% at the design wavelength. The coating has been applied to flats and lenses and has survived multiple thermal cycles from 300 to 4 K. We present the manufacturing method, the material properties, the tests performed, and estimates of the loss that can be achieved in practical lenses

    Routhian reduction for quasi-invariant Lagrangians

    Get PDF
    In this paper we describe Routhian reduction as a special case of standard symplectic reduction, also called Marsden-Weinstein reduction. We use this correspondence to present a generalization of Routhian reduction for quasi-invariant Lagrangians, i.e. Lagrangians that are invariant up to a total time derivative. We show how functional Routhian reduction can be seen as a particular instance of reduction of a quasi-invariant Lagrangian, and we exhibit a Routhian reduction procedure for the special case of Lagrangians with quasi-cyclic coordinates. As an application we consider the dynamics of a charged particle in a magnetic field.Comment: 24 pages, 3 figure

    Discovery of a New 89 Second X-ray Pulsar XTE J1906+09

    Get PDF
    We report on the discovery of a new pulsating X-ray source during Rossi X-ray Timing Explorer observations of a low galactic latitude field centered at RA (J2000) = 19 hr 05 m 43 s and Dec (J2000) = +08 deg 58 arcmin 48 arcsec. Significant pulsations were detected by both the PCA and HEXTE instruments aboard RXTE at a fundamental period of 89.17 +/- 0.02 seconds, with higher harmonics also visible in the 2-10 keV power spectrum. The folded lightcurve from the source is multiply peaked at lower energies, and changes to single peaked morphology above ~20 keV. The phase averaged spectrum from the source is well fit by strongly absorbed power law or thermal bremsstrahlung spectral models of photon index 1.9 +/- 0.1 or temperature 19.5 +/- 4.6 keV, respectively. The mean neutral hydrogen column density is approximately 10^23 cm^-2, suggesting a distance of >10 kpc to the source and a minimum 2-10 keV X-ray luminosity of 2*10^{35} ergs s^{-1}. By comparison with other pulsars with similar periods and luminosities, we suggest that XTE J1906+09 has a supergiant companion with an underfilled Roche lobe. We speculate further that one of the M stars in a peculiar M star binary system may be the companion.Comment: 14 pages, 2 figures. Accepted by ApJ Letter

    Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control

    Full text link
    For many years it was believed that an unstable periodic orbit with an odd number of real Floquet multipliers greater than unity cannot be stabilized by the time-delayed feedback control mechanism of Pyragus. A recent paper by Fiedler et al uses the normal form of a subcritical Hopf bifurcation to give a counterexample to this theorem. Using the Lorenz equations as an example, we demonstrate that the stabilization mechanism identified by Fiedler et al for the Hopf normal form can also apply to unstable periodic orbits created by subcritical Hopf bifurcations in higher-dimensional dynamical systems. Our analysis focuses on a particular codimension-two bifurcation that captures the stabilization mechanism in the Hopf normal form example, and we show that the same codimension-two bifurcation is present in the Lorenz equations with appropriately chosen Pyragus-type time-delayed feedback. This example suggests a possible strategy for choosing the feedback gain matrix in Pyragus control of unstable periodic orbits that arise from a subcritical Hopf bifurcation of a stable equilibrium. In particular, our choice of feedback gain matrix is informed by the Fiedler et al example, and it works over a broad range of parameters, despite the fact that a center-manifold reduction of the higher-dimensional problem does not lead to their model problem.Comment: 21 pages, 8 figures, to appear in PR
    corecore