2,545 research outputs found

    Direct calculation of the hard-sphere crystal/melt interfacial free energy

    Get PDF
    We present a direct calculation by molecular-dynamics computer simulation of the crystal/melt interfacial free energy, γ\gamma, for a system of hard spheres of diameter σ\sigma. The calculation is performed by thermodynamic integration along a reversible path defined by cleaving, using specially constructed movable hard-sphere walls, separate bulk crystal and fluid systems, which are then merged to form an interface. We find the interfacial free energy to be slightly anisotropic with γ\gamma = 0.62±0.01\pm 0.01, 0.64±0.01\pm 0.01 and 0.58±0.01kBT/σ2\pm 0.01 k_BT/\sigma^2 for the (100), (110) and (111) fcc crystal/fluid interfaces, respectively. These values are consistent with earlier density functional calculations and recent experiments measuring the crystal nucleation rates from colloidal fluids of polystyrene spheres that have been interpreted [Marr and Gast, Langmuir {\bf 10}, 1348 (1994)] to give an estimate of γ\gamma for the hard-sphere system of 0.55±0.02kBT/σ20.55 \pm 0.02 k_BT/\sigma^2, slightly lower than the directly determined value reported here.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Model-based Cognitive Neuroscience: Multifield Mechanistic Integration in Practice

    Get PDF
    Autonomist accounts of cognitive science suggest that cognitive model building and theory construction (can or should) proceed independently of findings in neuroscience. Common functionalist justifications of autonomy rely on there being relatively few constraints between neural structure and cognitive function (e.g., Weiskopf, 2011). In contrast, an integrative mechanistic perspective stresses the mutual constraining of structure and function (e.g., Piccinini & Craver, 2011; Povich, 2015). In this paper, I show how model-based cognitive neuroscience (MBCN) epitomizes the integrative mechanistic perspective and concentrates the most revolutionary elements of the cognitive neuroscience revolution (Boone & Piccinini, 2016). I also show how the prominent subset account of functional realization supports the integrative mechanistic perspective I take on MBCN and use it to clarify the intralevel and interlevel components of integration

    The Economics of Leveraged Takeovers

    Get PDF
    Financing of hostile takeovers has emerged as a central issue in the ongoing debate concerning corporate takeovers. Concomitant with the increase in the dollar value of takeovers during the past few years has been a significant increase in the percentage of tender offer financing accounted for by bank borrowing and the issuance of high yield debt, (that is, debt securities which are rated below Standard and Poor\u27s BBB-or Moody\u27s Baa3), hereafter referred to as junk bonds, have accounted for an increasingly greater percentage of takeover financing. This Article examines these concerns about debt financing of corporate takeovers from an efficient markets perspective. The efficient-market hypothesis has important implications for public policy toward corporate takeovers. Because a takeover involves the payment of premiums to target shareholders, prospective bidders must perceive a way to raise the target firm\u27s value, that is, the discounted cash flow of the target firm. We argue that junk-bond financing facilitates takeovers which in turn promote economic efficiency. Critics of leveraged takeovers, in our view, exaggerate the risks associated with these transactions, and in some instances, misunderstand the nature of corporate debt. After illustrating the structure of a leveraged takeover with an analysis of Mesa Petroleum\u27s unsuccessful bid for Unocal, this Article seeks to correct the misperceptions about corporate debt with a discussion of the economics of corporate leverage. Finally, we use the Mesa-Unocal case to evaluate the claims made by critics of leveraged takeovers

    The effects of stress on eyewitness memory: a survey of memory experts and laypeople

    Get PDF
    This survey examined lay and expert beliefs about statements concerning stress effects on (eyewitness) memory. Thirty-seven eyewitness memory experts, 36 fundamental memory experts, and 109 laypeople endorsed, opposed, or selected don’t know responses for a range of statements relating to the effects of stress at encoding and retrieval. We examined proportions in each group and differences between groups (eyewitness memory experts vs. fundamental memory experts; experts vs. laypeople) for endorsements (agree vs. disagree) and selections (don’t know vs. agree/disagree). High proportions of experts from both research fields agreed that very high levels of stress impair the accuracy of eyewitness testimony. A majority of fundamental experts, but not eyewitness experts, endorsed the idea that stress experienced during encoding can enhance memory. Responses to statements regarding moderating factors such as stressor severity and detail type provided further insight into this discrepancy. Eyewitness memory experts more frequently selected the don’t know option for neuroscientific statements regarding stress effects on memory than fundamental memory experts, although don’t know selections were substantial among both expert groups. Laypeople’s responses to eight of the statements differed statistically from expert answers on topics such as memory in children, in professionals such as police officers, for faces and short crimes, and the existence of repression, providing insight into possible ‘commonsense’ beliefs on stress effects on memory. Our findings capture the current state of knowledge about stress effects on memory as reflected by sample of experts and laypeople, and highlight areas where further research and consensus would be valuabl

    Facing stress: no effect of acute stress at encoding or retrieval on face recognition memory

    Get PDF
    Eyewitnesses may experience stress during a crime and when attempting to identify the perpetrator subsequently. Laboratory studies can provide insight into how acute stress at encoding and retrieval affects memory performance. However, previous findings exploring this issue have been mixed. Across two preregistered experiments, we examined the effects of stress during encoding and retrieval on face and word recognition performance. We used the Maastricht Acute Stress Test (MAST) to induce stress and verified the success of the stress manipulation with blood pressure measures, salivary cortisol levels, and negative affect scores. To examine differences in stressor timing, participants encoded target faces or words both when confronted with the stressor and during the subsequent cortisol peak and retrieved these stimuli 24 h later. We found neither effects of acute stress on face recognition memory during encoding or retrieval (Experiments 1 and 2), nor effects of encoding stress on word recognition memory (Experiment 2). Bayesian analyses largely provided substantial or strong evidence for the null hypotheses. We emphasize the need for well-powered experiments using contemporary methodology for a more complete understanding of the effect of acute stress on face recognition memory

    Weighted-density approximation for general nonuniform fluid mixtures

    Get PDF
    In order to construct a general density-functional theory for nonuniform fluid mixtures, we propose an extension to multicomponent systems of the weighted-density approximation (WDA) of Curtin and Ashcroft [Phys. Rev. A 32, 2909 (1985)]. This extension corrects a deficiency in a similar extension proposed earlier by Denton and Ashcroft [Phys. Rev. A 42, 7312 (1990)], in that that functional cannot be applied to the multi-component nonuniform fluid systems with spatially varying composition, such as solid-fluid interfaces. As a test of the accuracy of our new functional, we apply it to the calculation of the freezing phase diagram of a binary hard-sphere fluid, and compare the results to simulation and the Denton-Ashcroft extension.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E as Brief Repor

    The low temperature interface between the gas and solid phases of hard spheres with a short-ranged attraction

    Get PDF
    At low temperature, spheres with a very short-ranged attraction exist as a close-packed solid coexisting with an infinitely dilute gas. We find that the ratio of the interfacial tension between these two phases to the thermal energy diverges as the range of the attraction goes to zero. The large tensions when the interparticle attractions are short-ranged may be why globular proteins only crystallise over a narrow range of conditions.Comment: 6 pages, no figures (v2 has change of notation to agree with that of Stell

    Vehicle fleet emissions of black carbon, polycyclic aromatic hydrocarbons, and other pollutants measured by a mobile laboratory in Mexico City

    No full text
    International audienceBlack carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) are of concern due to their effects on climate and health. The main goal of this research is to provide the first estimate of emissions of BC and particle-phase PAHs (PPAHs) from motor vehicles in Mexico City. The emissions of other pollutants including carbon monoxide (CO), oxides of nitrogen (NOx), volatile organic compounds (VOCs), and particulate matter of diameter 2.5 ?m and less (PM2.5) are also estimated. As a part of the Mexico City Metropolitan Area field campaign in April 2003 (MCMA-2003), a mobile laboratory was driven throughout the city. The laboratory was equipped with a comprehensive suite of gas and particle analyzers, including an aethalometer that measured BC and a photoionization aerosol sensor that measured PPAHs. While driving through traffic, the mobile lab continuously sampled exhaust plumes from the vehicles around it. We have developed a method of automatically identifying exhaust plumes, which are then used as the basis for calculation of fleet-average emissions. In the approximately 75 h of on-road sampling during the field campaign, we have identified ~30 000 exhaust measurement points that represent a variety of vehicle types and driving conditions. The large sample provides a basis for estimating fleet-average emission factors and thus the emission inventory. Motor vehicles in the Mexico City area are estimated to emit 1700±200 metric tons BC, 57±6 tons PPAHs, 1 190 000±40 000 tons CO, 120 000±3000 tons NOx, 240 000±50 000 tons VOCs, and 4400±400 tons PM2.5 per year, not including cold start emissions. The estimates for CO, NOx, and PPAHs may be low by up to 10% due to the slower response time of analyzers used to measure these species. Compared to the government's official motor vehicle emission inventory for the year 2002, the estimates for CO, NOx, VOCs, and PM2.5 are 38% lower, 23% lower, 27% higher, and 25% higher, respectively. The distributions of emission factors of BC, PPAHs, and PM2.5 are highly skewed, i.e. asymmetric, while those for benzene, measured as a surrogate for total VOCs, and NOx are less skewed. As a result, the total emissions of BC, PPAHs, and PM2.5 could be reduced by approximately 50% if the highest 20% of data points were removed, but "super polluters" are less influential on overall NOx and VOC emissions
    • …
    corecore