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A B S T R A C T   

Eyewitnesses may experience stress during a crime and when attempting to identify the perpetrator subse
quently. Laboratory studies can provide insight into how acute stress at encoding and retrieval affects memory 
performance. However, previous findings exploring this issue have been mixed. Across two preregistered ex
periments, we examined the effects of stress during encoding and retrieval on face and word recognition per
formance. We used the Maastricht Acute Stress Test (MAST) to induce stress and verified the success of the stress 
manipulation with blood pressure measures, salivary cortisol levels, and negative affect scores. To examine 
differences in stressor timing, participants encoded target faces or words both when confronted with the stressor 
and during the subsequent cortisol peak and retrieved these stimuli 24 h later. We found neither effects of acute 
stress on face recognition memory during encoding or retrieval (Experiments 1 and 2), nor effects of encoding 
stress on word recognition memory (Experiment 2). Bayesian analyses largely provided substantial or strong 
evidence for the null hypotheses. We emphasize the need for well-powered experiments using contemporary 
methodology for a more complete understanding of the effect of acute stress on face recognition memory.   

1. Introduction 

The legal system often relies on eyewitnesses to identify perpetrators 
in the course of criminal investigations. Eyewitnesses may experience 
stress during a crime and may feel stressed when attempting to identify 
the perpetrator at the police station (e.g., Bornstein, Hullman, & Miller, 
2013; Yuille & Cutshall, 1986). It is known that acute stress at retrieval 
negatively affects episodic memory performance (Shields, Sazma, 
McCullough, & Yonelinas, 2017; Wolf, 2017), but these effects are 
understudied in tasks with more applied eyewitness relevance, such as 
face recognition. In addition, laboratory experiments examining the 
effects of acute stress at encoding on episodic memory performance 
often show mixed findings (e.g., Deffenbacher, Bornstein, Penrod, & 
McGorty, 2004; Shields et al., 2017; Vogel & Schwabe, 2016). Thus, it 
remains unclear how acute stress experienced at encoding or retrieval 

might affect witness face recognition performance. 

1.1. Effects of acute stress at encoding on memory performance 

Whether acute stress during encoding has a negative or positive ef
fect on memory performance seems to depend on the methodology used 
within a research discipline. In the eyewitness field, most research 
assessing measures such as recognition accuracy and discriminability 
reports that acute stress impairs memory performance by (e.g., Davis, 
Peterson, Wissman, & Slater, 2019; Deffenbacher et al., 2004; Morgan 
et al., 2004). In contrast, in the fundamental memory field many studies 
demonstrate that acute stress at encoding can enhance recognition ac
curacy and discriminability (e.g., Henckens, Hermans, Pu, Joëls, & 
Fernández, 2009; Vogel & Schwabe, 2016; Zoladz et al., 2011), although 
meta-analytic results suggest such enhancements occur only under 
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certain conditions (e.g., for experiments using stressor-relevant mate
rials and a short delay between stressor and encoding; Shields et al., 
2017). These discrepant findings align with expert views on how expe
rienced stress at encoding might affect memory. One recent survey 
showed that 78% of 36 fundamental memory experts agreed that 
Experiencing stress during an event (i.e., at encoding) enhances memory for 
that event, whereas only 32% of 37 eyewitness experts agreed with this 
statement (Marr, Otgaar, Sauerland, Quaedflieg, & Hope, 2020). 
Methodological differences in the stimuli, induction of stress, stressor 
verification, stressor timing, and retrieval timing may be the key reasons 
in explaining these contrasting findings (see Sauerland et al., 2016). 

The to-be-remembered stimuli often differ between the fields. First, 
some evidence suggests that stress effects on memory are stronger for 
emotional stimuli than neutral stimuli (e.g., Cahill, Gorski, & Le, 2003; 
Smeets, Otgaar, Candel, & Wolf, 2008), perhaps due to the amygdala's 
sensitivity to both adrenergic and glucocorticoid stress responses (Joëls, 
Fernández, & Roozendaal, 2011; McGaugh, 2015). However, a meta- 
analytic review found no evidence that valence was a moderator of 
acute stress at encoding on memory performance (Shields et al., 2017). 
Second, the eyewitness field has more commonly examined encoding 
stress effects on eyewitness identification or face recognition perfor
mance. Such research has often found negative effects of encoding stress 
on face recognition performance (e.g., Davis et al., 2019; Deffenbacher 
et al., 2004; Morgan et al., 2004; Pezdek, Abed, & Cormia, 2020). 
However, in an eyewitness study conducted by Sauerland et al. (2016), 
participants were stressed using the Maastricht Acute Stress Test (MAST; 
Smeets et al., 2012) before they witnessed a live theft. Levels of acute 
stress were confirmed by cortisol measurements. However, this acute 
stress had no impact on identification performance in a lineup viewed 
6–8 days later. 

In the fundamental memory field, encoding enhancements have 
mainly been found with non-facial stimuli such as words, pictures, and 
slideshows (Domes, Heinrichs, Reichwald, & Hautzinger, 2002; 
Henckens et al., 2009; Payne et al., 2006). Differences in type of to-be- 
remembered stimuli may play a role in the contrasting findings, as some 
research suggests that faces are processed differently than other forms of 
stimuli (e.g., Diamond & Carey, 1986; Kanwisher & Yovel, 2006; Sato & 
Yoshikawa, 2013; Woodhead & Baddeley, 1981). Several theories sug
gest that we may learn and recognize faces differently than we do other 
types of stimuli. For example, the face-specificity hypothesis suggests that 
faces are distinctively processed in unique areas of the brain (i.e., the 
fusiform face area) than other stimuli (Kanwisher & Yovel, 2006), and 
the expertise hypothesis proposes that humans are generally experts in 
face recognition (e.g., Diamond & Carey, 1986). Thus, although there is 
some evidence to suggest that stress during encoding enhances memory 
for stimuli like words, static pictures, and slideshows (e.g., Domes et al., 
2002; Henckens et al., 2009; Payne et al., 2006; Zoladz et al., 2011; but 
see Schwabe & Wolf, 2010; Zoladz et al., 2014), it is possible that stress 
does not affect memory for faces to the same extent. Some experimental 
results support this idea. For instance, Paul et al. (2016) found that acute 
stress experienced before a visual discrimination task impaired spatial 
information but did not affect the discrimination of faces. Wiemers, 
Sauvage, Schoofs, Hamacher-Dang, and Wolf (2013), using the Trier 
Social Stress Test (Kirschbaum, Pirke, & Hellhammer, 1993), found that 
stressed participants outperformed non-stressed participants in face and 
central object recognition, but not peripheral object recognition. These 
differences in stimuli may explain at least some of the discrepancies 
between the eyewitness research and fundamental memory research as 
fundamental memory experiments most often use words or other non- 
facial images as stimuli. 

Many eyewitness experiments use stressors such as violent videos 
(Clifford & Hollin, 1981; Cutler, Penrod, & Martens, 1987; Kramer, 
Buckhout, & Eugenio, 1990), electric shocks (Brigham, Maass, Martinez, 
& Wittenberger, 1983; Tooley, Brigham, Maas, & Bothwell, 1987), 
threats of injection (e.g., Maass & Kohnken, 1989; Peters, 1988), and 
high-fidelity interactive training scenarios (Hope et al., 2016). These 

stress inductions are typically verified with self-report measures (e.g., 
Buckhout, Alper, Chern, Silverberg, & Slomovits, 1974; Davis et al., 
2019). Other experiments have grouped participants using self-reports 
about trait stress, state stress, or test anxiety (Bailis & Mueller, 1981; 
Mueller, Bailis, & Goldstein, 1979; Nowicki, Winograd, & Millard, 1979) 
and drawn conclusions about stress and memory based on group dif
ferences. Such varied methods may elicit different levels of arousal and 
stress. However, it is difficult to evaluate the efficacy of stress inductions 
based on self-report data alone, as subjective self-reports of stress do not 
always correspond to physiological stress responses (Hellhammer & 
Schubert, 2012). Additionally, methods that increase arousal, thus 
initiating a noradrenergic response, do not necessarily produce the in
creases in cortisol that are associated with a physiological stress 
response (Dickerson & Kemeny, 2004). In contrast, researchers in the 
fundamental memory field typically use validated laboratory stressors to 
induce stress (Kirschbaum et al., 1993; Schwabe, Haddad, & Scha
chinger, 2008; Smeets et al., 2012) with physiological measures serving 
to verify the stress induction in addition to subjective measures. 

Differences in timing of the stress induction and memory encoding 
may also partly account for the contrasting findings. Stress modulates 
memory formation and retrieval in a time-dependent manner, closely 
linked to the temporal action profile of major stress mediators in the 
brain, in particular noradrenaline and glucocorticoids (Hermans, 
Henckens, Joëls, & Fernández, 2014; Joëls et al., 2011; Quaedflieg & 
Schwabe, 2018; Schwabe, Joëls, Roozendaal, Wolf, & Oitzl, 2012). 
Eyewitness studies mostly examine stress during encoding (e.g., most 
experiments in the Deffenbacher et al. meta-analysis, 2004; Hulse & 
Memon, 2006; Morgan et al., 2004). Examining this acute stress stage 
reflects the reality of an eyewitness experience during a crime. In 
contrast, much of the fundamental memory research conducted on stress 
during the encoding phase focuses on the delayed stage, that is, when 
participants encoding information after engaging in a stressor (e.g., 
Wolf, 2012, Exp 2; Zoladz et al., 2011; Quaedflieg, Schwabe, Meyer, & 
Smeets, 2013), as cortisol peaks about 15–20 min following the stress 
induction. 

The two fields also vary in timing of the encoding and retrieval 
phases. Many eyewitness experiments examining stress and memory 
conduct the encoding and retrieval sessions on one day (e.g., Davis et al., 
2019; Hulse & Memon, 2006; Valentine & Mesout, 2008). However, a 
separation between encoding and retrieval is necessary to distinguish 
stress effects during encoding or consolidation from stress effects during 
retrieval on memory. If encoding and retrieval take place in one day, 
then it is impossible to say what memory phase was influenced by the 
stress. A solution to this issue is to separate encoding and retrieval by at 
least 24-h, as commonly done in fundamental memory studies (e.g., 
Shermohammed, Davidow, Somerville, & Murty, 2019; Vogel & 
Schwabe, 2016; Wolf, 2012, Exp 2; Zoladz et al., 2011, 2014). 

To briefly summarize, the fundamental field generally shows that 
acute encoding stress enhances memory performance (e.g., Henckens 
et al., 2009; Shields et al., 2017; Vogel & Schwabe, 2016), whereas the 
eyewitness field suggests that acute stress impairs memory performance 
(e.g., Davis et al., 2019; Deffenbacher et al., 2004; Morgan et al., 2004). 
Variations in methodology likely contribute to the discrepant findings 
regarding the effects of acute stress on memory performance in the 
eyewitness and fundamental memory fields. As such, when designing 
studies and interpreting results, it is imperative to consider potential 
moderators including type of stimuli, type of stress induction and 
manipulation check, stressor and retrieval timing. 

1.2. Effects of acute stress at retrieval on memory performance 

Stress experienced just prior to retrieval often impairs memory per
formance (e.g., Quaedflieg & Schwabe, 2018; Shields et al., 2017; Wolf, 
2017). This impairment is greatest during the cortisol peak caused by 
non-genomic actions of glucocorticoids that develop about 15–20 min 
following the stress induction (de Quervain, Roozendaal, & McGaugh, 
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1998; Joëls et al., 2011; Joëls & Baram, 2009). Impairments continue as 
the delayed genomic effects develop, around 60–90 min post-stressor 
and last for hours (Schwabe & Wolf, 2014; Shields et al., 2017; Wolf, 
2017). Accordingly, the specific timing of the stressor is crucial. When 
the memory test takes place about 20–30 min post-stressor, that is, 
during the delayed stage (i.e., when stress-induced cortisol increases), 
results often show memory impairments (Schönfeld, Ackermann, & 
Schwabe, 2014; Schwabe & Wolf, 2014). When the memory test takes 
place during the acute stress stage (i.e., just after or during the stress 
induction and therefore before the stress-induced cortisol peak), such 
impairments do not regularly occur (e.g., Schwabe & Wolf, 2014). In 
fact, one study reported that retrieval performance during stress was 
positively associated with the noradrenergic stress response (Schönfeld 
et al., 2014). 

Apart from stressor timing, the type of memory test and valence play 
a role in the impairing effects of retrieval stress. Stress prior to retrieval 
impairs both recall (e.g., Kuhlmann, Piel, & Wolf, 2005; Schönfeld et al., 
2014; Smeets et al., 2008) and recognition performance (Li, Weerda, 
Guenzel, Wolf, & Thiel, 2013; Schwabe & Wolf, 2014), with stronger 
effects for recall than recognition (see Gagnon & Wagner, 2016). 
Furthermore, retrieval stress tends to elicit larger negative effects for 
emotional than neutral stimuli (e.g., Kuhlmann et al., 2005; Schönfeld 
et al., 2014). Thus, the common view is that stress interferes with 
retrieval performance, though stressor timing, type of memory test, and 
valence moderate these effects. 

Few experiments have investigated the effects of retrieval stress on 
identification accuracy or face recognition, and findings are mixed. Li 
et al. (2013) found that stress inducted immediately prior to retrieval 
impaired face recognition sensitivity. However, in a subsequent study 
the same authors found no statistically significant effects of stress on 
face recognition accuracy (Li, Weerda, Milde, Wolf, & Thiel, 2014). As 
far as we are aware, no research has yet examined effects of stress during 
retrieval on face recognition memory. Understanding how experiencing 
stress during retrieval is likely relevant for applied legal contexts, where 
witnesses may be stressed when attempting to identify a suspect in a 
police lineup. 

1.3. The present experiment 

Combining methodology from the eyewitness and fundamental 
memory fields, the aim of the current two experiments was to examine 
the effects of acute stress at encoding and retrieval on face and word 
recognition performance. We induced stress by means of the MAST 
(Smeets et al., 2012), used physiological measures to verify the stress 
induction, and inserted a 24–26 h interval between encoding and 
retrieval. We also tested the effect of stress stage by inserting encoding 
and retrieval stages both during the stress induction (i.e., acute stress 
stage, when noradrenergic activity ensues) and after the stress induction 
(i.e., delayed stage, when stress-induced cortisol peaks). 

In Experiment 1, we examined four between-subjects groups: no 
stress, stress at encoding, stress at retrieval, and stress at both encoding 
and retrieval and examined stress stage (acute stress vs. delayed) as a 
within-subjects measure. Based on models and past findings from the 
fundamental memory field (e.g., Diamond, Campbell, Park, Halonen, & 
Zoladz, 2007; Hoscheidt, LaBar, Ryan, Jacobs, & Nadel, 2014; Joëls, Pu, 
Wiegert, Oitzl, & Krugers, 2006; Vogel & Schwabe, 2016; Wiemers et al., 
2013), we predicted that participants who experienced stress during 
encoding (but not retrieval) would show enhanced face recognition 
memory compared to the other groups (Hypothesis 1). We also predicted 
that those who experienced stress during retrieval (but not encoding) 
would perform the poorest on the face recognition memory task out of 
the four groups (Hypothesis 2). Furthermore, we expected that the 
predicted stress effects would be larger during the cortisol peak (i.e., 15 
min post-stressor; delayed stage) than before cortisol had peaked (i.e., 
during stressor; acute stress stage, Hypothesis 3). 

Following null results in Experiment 1, Experiment 2 compared 

participants who experienced encoding stress with those who did not to 
examine memory performance for face versus word stimuli. We pre
dicted that participants stressed during encoding would show better 
recognition memory for words than non-stressed participants (Hypoth
esis 4). Based on our results from Experiment 1 and extant literature 
concerning the distinctiveness of face processing (e.g., Kanwisher & 
Yovel, 2006; McGugin, Newton, Gore, & Gauthier, 2014), we expected 
to obtain similar findings for faces as those in Experiment 1. That is, we 
hypothesized no statistically significant difference in memory perfor
mance for faces between stress conditions (Hypothesis 5). We also 
examined the role of stress stage (acute stress vs. delayed) though we 
had no a priori hypotheses for these variables due to the null findings in 
Experiment 1. 

2. Method 

Both experiments were preregistered on the Open Science Frame
work (Experiment 1: https://osf.io/k8x5q/?view_only=563a7d16459a 
47a7aebff54ccd70bf09; Experiment 2: https://osf.io/sqxgb/? 
view_only=b0564519ca604a17a65b1a34488af187). 

2.1. Participants 

Based on a priori power analyses conducted using G*Power (Faul, 
Erdfelder, Lang, & Buchner, 2007) for an Analysis of Variance (ANOVA) 
for fixed effects, special, main effects and interactions with 80% power, 
α = 0.05, and a medium-large effect size (f = 0.26–301; based on past 
relevant work including Shields et al., 2017), the target sample size for 
both experiments was N = 119. 

We recruited participants between the ages of 18 and 35 from the 
university and local community using posters, handouts/flyers, social 
media, and lecture visits. Consistent with relevant previous research 
examining factors that may affect physiological stress reactivity (e.g., 
Shields, 2020; Strahler, Skoluda, Kappert, & Nater, 2017), we screened 
for and excluded participants who habitually smoked (>5 cigarettes per 
day), drank alcohol (>15 drinks per week), or used drugs (more than 
once per month). Participants were also excluded for a variety of other 
health reasons (i.e., BMI < 17 and >30, use of medication containing 
cortisol, recent vaccinations, psychological treatments, cardiovascular 
problems, or endocrine disorders). Because sex hormones can affect 
cortisol reactivity (e.g., Kirschbaum, Kudielka, Gaab, Schommer, & 
Hellhammer, 1999; Kudiekla, Hellhammer, & Wust, 2009; Strahler 
et al., 2017), females who were not taking a form of hormonal birth 
control were excluded in order to keep the sample homogeneous. Only 
white participants were included to avoid influence of the own-race 
effect on face identification (e.g., Meissner & Brigham, 2001). Addi
tional exclusion criteria for Experiment 2 included participation in 
Experiment 1 or in another stress-based laboratory study using the 
MAST within the past month, as past research shows that the MAST can 
be used repeatedly with no significant signs of habituation or sensiti
zation with intervals of three weeks and one month (Quaedflieg, Meyer, 
van Ruitenbeek, & Smeets, 2017). 

For Experiment 1, 144 participants were tested. Ten participants 
withdrew during or after Day 1, three experienced a computer program 
malfunction, and 11 participants indicated having previously seen one 
or more of the face stimuli and were excluded post-testing. The final 
sample (N = 120) included 41 men and 79 women (age range 18–31 
years; M = 22.04, SD = 2.87). The majority were university students 
(91.70%) and the rest were not students (8.30%). Most of the students 

1 For Experiment 1, we preregistered that we aimed for a small to medium 
effect size (between f = 0.22 and 0.26). Due to difficulties recruiting eligible 
participants and a slight change in our analysis plan (as described later), we 
tested enough participants to provide statistical power for the medium-large 
effect size of f = 0.30, as indicated here. 
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were completing their Bachelors degrees (75.50%) and the rest were 
completing a graduate degree (24.50%). 

For Experiment 2, 137 participants were tested. Seven participants 
withdrew on or after Day 1, three experienced a computer program 
malfunction, and six participants indicated having previously seen one 
or more of the face stimuli and were excluded post-testing. The final 
sample (N = 121) included 34 men and 87 women (age range 18–34 
years; M = 22.21, SD = 2.94). The majority were university students 
(94.2%) and the rest were not students (5.80%). Again, most of these 
students were completing their Bachelors degrees (60.50%), with the 
rest completing a graduate degree (39.50%). 

Participants were asked to follow several rules before Day 1 (Ex
periments 1 and 2) and Day 2 (Experiment 1). These instructions 
included not drinking alcohol the night before, getting a full night of 
sleep, and refraining from eating, drinking anything besides still water, 
exercising, smoking, or brushing teeth for at least 2 h prior to the ses
sion. Participants received either course credit or €20 (Experiment 1) or 
€15 (Experiment 2) in gift vouchers on completion. This study was 
approved by the ethical committee of the Faculty of Psychology and 
Neuroscience at Maastricht University. 

2.2. Design 

Experiment 1 had a 4 (condition: encoding stress vs. retrieval stress 
vs. stress at encoding and retrieval vs. no stress) x 2 (stress stage: acute 
stress vs. delayed) mixed design. Stress stage served as a within-subjects 
factor. Experiment 2 had a 2 (condition: no encoding stress vs. encoding 
stress) x 2 (stress stage: acute vs. delayed) x 2 (stimulus type: faces vs. 
words) mixed design. Stress stage and stimulus type were within- 
subjects factors. For both experiments, participants were semi- 
randomly assigned to the stress conditions, balancing gender across 
groups. Our dependent variables included overall accuracy, proportion 
of hits, proportion of false alarms, sensitivity (d’; exploratory for 
Experiment 1) and response bias indices (c; exploratory for Experiments 
1 and 2). Sensitivity was calculated by the difference between the z- 
scores of number of hits and number of false alarms, where the larger d’, 
the better one's performance. Response bias was calculated by the sum of 
the z-scores of hits and false alarms divided by two, where 0 represents 
no bias, values less than 0 represent a liberal bias, and values greater 
than 0 represent a conservative bias.2 Dependent measures for the 
manipulation check included negative affect scores, diastolic and sys
tolic blood pressure measurements, and salivary cortisol levels (Exper
iment 2). 

2.3. Materials 

2.3.1. Stimuli and memory test 

2.3.1.1. Faces (Experiments 1 and 2). Images were taken from an image 
database comprised of past and current student and staff volunteers at 
the Maastricht University. In Experiment 1, we used two color photo
graphs each of 12 males and 12 females as targets (i.e., 48 photographs 
in total). Targets were all white young adults with a variety of hair 
colors, hair lengths, hair textures, facial shapes, body types, and eye 
colors. Photographs of each individual were taken on the same day with 
no changes in appearance (e.g., haircuts) besides facial expression. 
Participants viewed two distinct images of each target at encoding, once 
as a smiling portrait picture and once as a full body picture. In Experi
ment 2, only the smiling portrait picture was shown (i.e., 24 pictures 
total). Each image was displayed for 4 s with a 1-s interstimulus interval 

which allowed for the images to fit within the time-constrained blocks in 
the (control) MAST procedure. Half of the images (either all males or 
females) were shown at the acute stress stage and the remaining images 
were shown at the delayed stage. We counterbalanced gender order and 
randomized the order of the images in blocks. The recognition test 
comprised 48 color photographs (24 old, 24 new; 24 male, 24 female) of 
previously unseen neutral portrait pictures and consisted of a yes/no 
identification question. We used previously unseen photos at test to 
ensure that the task measured face recognition as opposed to image 
recognition (see Burton, 2013). The total number of faces used is com
parable to other recent similar work using face recognition tasks (e.g., 
Davis et al., 2019; Pezdek et al., 2020). Participants provided confidence 
judgments for all responses on a scale of 0–100% using a sliding bar.3 

2.3.1.2. Words (Experiment 2). Twenty-four negatively valenced words 
served as targets. Commonly-known negatively valenced nouns were 
chosen from the Affective Norms for English Words (ANEW; Bradley & 
Lang, 1999). We used negative words because some research suggests 
stronger stress effects on memory for emotional stimuli (e.g., Cahill 
et al., 2003; Joëls et al., 2011; Smeets et al., 2008, but see Shields et al., 
2017). Groups of words were balanced for valence, arousal, frequency, 
and length. The presentation of and retrieval test for words was analo
gous to the procedure for faces, again with 24 targets and 24 fillers. The 
order of recognition tests for faces and words were counterbalanced. 

2.3.2. Maastricht Acute Stress Test (MAST) 
The MAST (Smeets et al., 2012) is a validated laboratory stressor. In 

this task, participants engage in blocks of hand immersion into ice-cold 
water (2–4 ◦C), combined with blocks of socially-evaluated mental 
arithmetic in front of a critical experimenter who gives negative feed
back throughout the task Additionally, participants consent to and are 
told they are being video recorded for later facial expression analysis. 
Thus, a second monitor displays a live video of the participant's face to 
further induce stress, though in reality no recordings are taken. Partic
ipants in the no stress conditions were exposed to the control version of 
this task, which includes hand immersion into room-temperature water 
(35 ◦C), basic counting from 1 to 25, and no mention of a video 
recording. The traditional MAST was slightly varied in these experi
ments. That is, blocks of stimuli (Experiment 1: faces; Experiment 2: 
faces and words) were intermixed with the blocks of hand immersion 
and mental arithmetic. There were four 30 s blocks during the acute 
stress stage and four 30 s blocks during the delayed stage. This version of 
the MAST took 16.5 min in total. Fig. 1 depicts a detailed timeline of the 
procedure. 

2.3.3. Affect 
The Positive and Negative Affect Schedule (PANAS; Watson, Clark, & 

Tellegen, 1988) consists of two mood scales containing 10 items that 
measure positive and negative affect. For each item (e.g., interested, 
excited, nervous, distressed, etc.), participants indicate to what extent 
they feel that way at the present moment on a 5-point Likert scale (from 
very slightly or not at all to extremely). We measured affect at three 
timepoints as shown in Fig. 1: during the baseline questionnaires, after 
the MAST, and at the end of the session after the delayed stage. 

2.3.4. Blood pressure 
To examine autonomic nervous system activation, we collected 

systolic and diastolic blood pressure using an Omron Blood Pressure 
Monitor 705IT (Coleman, Freeman, Steel, & Shennan, 2006). We 
measured blood pressure eight times throughout the procedure: once 
during the first saliva sample, once after the MAST anticipation block, 
twice during the MAST, once just after the MAST, once during the 

2 When proportions of hits or false alarms equaled 0% or 100%, adjusted 
rates were used for the d’ and c calculations. When 0%, hit or false alarm rates 
were calculated as 0.5 – n; When 100%, hit or false alarm rates were calculated 
as, (n – 0.5) / n, where n = number of trials. 3 Confidence data were not analyzed or reported in this paper. 
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second saliva sample, and twice during the delayed stage (see Fig. 1). 
In Experiment 2, the original blood pressure monitor failed, so an 

updated version (Omron M7 IT HEM-7322 T-E) was used after 11 par
ticipants had been tested, although nothing changed procedurally. 

2.3.5. Cortisol 
We collected saliva samples from participants twice on Day 1 

(Experiment 1 and 2) and Day 2 (Experiment 1) with synthetic Salivette 
(Sarstedt®, Etten-Leur, the Netherlands) devices. In the absence of 
funding for sample processing, we have not analyzed the samples from 
Experiment 1. The saliva samples from Experiment 2 were frozen and 
stored at − 20 ◦C until analysis. After thawing, Salivettes were centri
fuged at 3000 rpm for 5 min, which resulted in a clear supernatant of 
low viscosity. Salivary concentrations were measured using commer
cially available chemiluminescence immunoassay with high sensitivity 
(IBL International, Hamburg, Germany). The intra- and inter-assay co
efficients for cortisol were both below 9%. 

2.4. Procedure 

We tested participants in both experiments between 12:00 pm and 
6:00 pm to account for diurnal cortisol levels (Shields, 2020). After 
giving consent, participants completed the PANAS and demographic 
questions as well as other filler questionnaires unrelated to this study. 
Participants were aware that they would be asked to recognize the 
stimuli during the follow-up session. After 10 min, participants provided 
a saliva sample and engaged in the (control) MAST, while viewing 
blocks of faces (Experiment 1) or blocks of faces or words (Experiment 
2). This constituted the acute stress stage of face encoding. Next, par
ticipants again completed the PANAS before participating in a filler task 
(Tetris). Once 15 min had passed since the end of the (control) MAST (to 
await the expected cortisol response; Smeets et al., 2012), participants 
provided another saliva sample and completed the delayed stage of face 
encoding, consisting of blocks of faces (Experiment 1) or faces and words 
(Experiment 2) in 30 s chunks which mimicked encoding at the acute 
stress stage. Following this, participants once again completed the 
PANAS. The Day 1 session took 1 h to complete. 

Participants returned to the lab 24–26 h later. For Experiment 1, the 
procedure on Day 2 was identical to Day 1 with the exception that 
instead of encoding faces during and after the (control) MAST partici
pants took part in a face recognition test at these times. For Experiment 
2, the Day 2 session did not involve engagement with the (control) 
MAST but instead consisted only of a recognition test which took 15 min 

to complete. Following the recognition test, participants received a 
debriefing and compensation. Fig. 1 shows an overview of the procedure 
timeline. 

2.5. Data analysis 

To verify the stress manipulations, we conducted mixed ANOVAs on 
the effect of stress condition (i.e., stress vs. no stress) on self-reported 
negative affect scores and systolic and diastolic blood pressure across 
each testing day (i.e., timing: three levels for negative affect; eight levels 
for blood pressure). For Experiment 2, we also conducted a mixed 
ANOVA on the effect of stress condition on salivary cortisol pre- and 
post-stressor. Our main analyses for Experiment 1 differed to those that 
were pre-registered. These deviations were decided upon prior to 
analyzing the data. Specifically, rather than conducting two separate 2 
(stress at encoding: yes vs. no) x 2 (stress at retrieval: yes vs. no) for each 
testing stage, we conducted a mixed ANOVA with condition (no stress 
vs. encoding stress vs. retrieval stress vs. both) as between subjects and 
stress stage (acute stress vs. delayed) as within subjects factor. We made 
this decision in order to compare the stages as past research has 
emphasized that stress effects on memory are time sensitive (e.g., 
Quaedflieg & Schwabe, 2018; Schwabe et al., 2012). Distinctly exam
ining the four stress conditions in one analysis also allowed for a clearer 
test of our hypotheses, which placed emphasis on the encoding only and 
the retrieval only groups. Thus, for both experiments, we conducted one- 
way mixed ANOVAs to analyze the effects of condition on overall ac
curacy, proportion of hits, proportion of false alarms, sensitivity, and 
response bias. For all tests, when Mauchly's test indicated that the 
assumption of sphericity was violated, we corrected the degrees of 
freedom using Greenhouse-Geisser estimates of sphericity. 

3. Results 

3.1. Manipulation checks 

Table 1 provides an overview of the main inferential statistics for the 
manipulation checks across both experiments. 

3.1.1. Negative affect 
Higher scores on the negative affect portion of the PANAS reflect 

higher self-reported negative affect. In Experiment 1 on Day 2, negative 
affect scores were missing for one participant (N = 119). Across both 
experiments, stress differentially affected negative affect scores 

Fig. 1. Timeline for Experiment 1 (Day 1 and 2) and Experiment 2 (Day 1) 
Note. HIT = hand immersion trial. MA = mental arithmetic. S = encoding (Day 1) or recognition (Day 2) of stimuli. Day 2 of Experiment 2 not visually depicted. =
blood pressure measurement. MAST = Maastricht Acute Stress Test or control version. 
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depending on the timing (see Table 1). The pattern of results was similar 
in each analysis, with follow-up tests revealing no statistically signifi
cant differences between groups at baseline (all ps ≥ 0.050, see Table 1). 
However, right after the stressor (i.e., MAST), stressed participants re
ported statistically significantly higher levels of negative affect than 
non-stressed participants (all ps ≤ 0.001, see Table 1). Thus, negative 
affect scores in both experiments subjectively confirm the stress induc
tion. Fig. 2 displays changes in negative affect scores across time in both 
experiments. 

3.1.2. Blood pressure 
In Experiment 2, blood pressure measurements were missing for one 

participant (N = 120). In both experiments, stress differentially affected 
both systolic and diastolic blood pressure depending on the timing (see 
Table 1). Follow-up tests revealed no statistically significant differences 
between stress conditions at baseline (all ps ≥ 0.419, see Table 1). 
However, as expected, during the stressor (i.e., MAST 1), the stress 
groups showed statistically significantly higher blood pressure than the 
non-stressed group (all ps ≤ 0.003, see Table 1). Thus, blood pressure 
measures in both experiments confirm physiological arousal. Fig. 3 
shows changes in blood pressure measurements across time on each 
testing day. 

3.1.3. Salivary cortisol (Experiment 2) 
Stress differentially affected salivary cortisol levels as a function of 

timing (see Table 1). Follow-up tests revealed no statistically significant 
differences in salivary cortisol between stress conditions at baseline (p =
.400, see Table 1). As expected, after the stressor, the stress group 
showed statistically significantly higher salivary cortisol levels than the 
non-stressed group, (p < .001, see Table 1). Thus, the salivary cortisol 
levels confirm the acute stress induction. Fig. 4 shows changes in sali
vary cortisol levels before and after the stressor. We also exploratorily 
grouped cortisol responders vs. non-responders, with 62.30% of the 
stress group showing a high cortisol response and the other 37.70% 
showing a low cortisol response (1.5 nmol/l increase, Miller, Plessow, 
Kirschbaum, & Stalder, 2013). However, this exploratory analysis 
examining high responders, low responders, and participants who were 
not stressed revealed no statistically significant differences of acute 
stress on any memory measure (all ps > 0.050; see Table A in supple
mentary materials), and thus, no further analyses on these subgroups 
were performed or reported. 

3.2. Effects of acute stress on memory performance 

Tables 2-4 provide a summary of the inferential and descriptive 
statistics for all dependent variables regarding the main analyses from 

each experiment. 

3.2.1. Experiment 1 
For face recognition, we found no statistically significant effects of 

condition, stress stage, or interactions between these factors on overall 
accuracy, proportion of hits, or proportion of false alarms4,.5 Thus, Hy
potheses 1, 2, and 3 were not supported. We also examined sensitivity 
(d’) and response bias (c) as exploratory (i.e., non-preregistered) 
outcome variables. There were no statistically significant effects for 
sensitivity, ps ≥ 0.060. For response bias, the main effect of stress stage 
was statistically significant. Fig. 5 illustrates that responding was more 
liberal at the acute stress stage than at the delayed stage although par
ticipants in general were liberal rather than conservative in their 
responding. 

We also examined the data using Bayesian ANOVAs with JASP 
version 0.13.1 (JASP Team, 2020). We adopted a weakly informative 
prior by setting the r scale fixed effect at a default value of 0.5. Results 
were similar to those reported above, with only the evidence regarding 
response bias (c) pointing away from the null hypothesis. Specifically, 
for the main effect of stress stage on response bias, there was very strong 
evidence for the alternative hypothesis (BF10 = 37.037; Jarosz & Wiley, 
2014; Jeffreys, 1961; Raftery, 1995). All other estimated BFs examining 
main and interaction effects of the dependent variables suggested the 
data were in favor of the null hypothesis, with evidence ranging from 
anecdotal to strong (i.e., from BF01 = 1.340 to BF01 = 13.356, see 
Table D in supplementary materials). 

3.2.2. Experiment 2 
Memory measure data were missing for one participant, and thus 

they were excluded from the following analyses (N = 120). Failing to 
support Hypothesis 4, we found no evidence for effects of acute stress on 
word recognition performance. However, supporting Hypothesis 5, we 
again found no statistically significant evidence that acute stress affected 
face recognition memory. The main effect of condition was non- 
significant for all dependent measures. A main effect of stimulus type 
indicated a higher false alarm rate for words than faces. Statistically 
significant interactions between stimulus type and stress stage on hit 

Table 1 
Inferential Statistics for Stress x Timing Interactions and Simple Main Effects at Baseline and Post-Stressor across Experiments.   

Experiment 1 Day 1 Experiment 1 Day 2 Experiment 2 

Stress x Timing 
Interaction 

Simple Effects of Stress Stress x Timing 
Interaction 

Simple Effects of Stress Stress x Timing 
Interaction 

Simple Effects of Stress 

Baseline Post- 
Stressor 

Baseline Post- 
Stressor 

Baseline Post- 
Stressor 

Negative affect F  34.703  0.004  39.909  21.130  3.932  31.712  29.160  0.740  41.454 
p  <0.001  0.948  <0.001  <0.001  0.050  <0.001  <0.001  0.391  <0.001 
ηp

2  0.227  <0.001  0.213  0.153  0.033  0.213  0.197  0.006  0.258 
Systolic blood 

pressure 
F  12.787  0.162  19.102  12.393  0.353  14.426  10.939  0.578  27.360 
p  <0.001  0.688  <0.001  <0.001  0.554  <0.001  <0.001  0.449  <0.001 
ηp

2  0.098  0.001  0.139  0.095  0.003  0.109  0.085  0.005  0.188 
Diastolic blood 

pressure 
F  10.776  0.010  20.838  6.972  0.658  9.479  14.858  0.324  29.262 
p  <0.001  0.921  <0.001  <0.001  0.419  0.003  <0.001  0.570  <0.001 
ηp

2  0.084  <0.001  0.150  0.056  0.006  0.074  0.110  0.003  0.199 
Salivary cortisol F  –  –  –  –  –  –  66.535  0.714  31.229 

p  –  –  –  –  –  –  <0.001  0.400  <0.001 
ηp

2  –  –  –  –  –  –  0.359  0.006  0.208 

Note. Experiment 1, Day 1: N = 120. Experiment 1, Day 2: N = 119/120. Experiment 2: N = 120/121. Findings in bold are statistically significant at the p < .05 level. 

4 As preregistered, we also conducted the analyses after removing outliers 
(scores ≥2.5 SDs from the mean; see Table B in supplementary materials). These 
analyses (Ns = 112/118) returned analogous patterns of results.  

5 Additionally, we analyzed data with guesses (confidence at 50% or below) 
removed (see Table C in supplementary materials). No statistically significant 
interaction or main effects emerged for any of the outcome variables. Thus, the 
main effect of stress stage on response bias was no longer statistically significant 
although responding was still in general liberal rather than conservative. 
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rate and response bias modified main effects of stimulus type. Specif
ically, words elicited a higher hit rate and a more conservative response 
bias than faces at both the acute stress stage, hits: F = 170.936, p < .001, 
ηp

2 = 0.592; c: F = 246.715, p < .001, ηp
2 = 0.676, and the delayed stage, 

hits: F = 56.189, p < .001, ηp
2 = 0.323; c: F = 129.236, p < .001, ηp

2 =

0.523. Additionally, the stimulus type by stress stage interaction was 
statistically significant for overall accuracy and sensitivity. Follow-up 
tests indicated higher overall accuracy for words as opposed to faces 
during the acute stress stage, F = 10.350, p = .002, ηp

2 = 0.081, but not 

the delayed stage, F = 0.572, p = .451, ηp
2 = 0.005. Similarly, d’ scores 

for words as opposed to faces were higher during the acute stress stage, 
F = 9.154, p = .003, ηp

2 = 0.072, but not the delayed stage, F = 0.994, p 
= .321, ηp

2 = 0.008.6,7 

Bayesian ANOVAs revealed decisive evidence for the alternative 
hypothesis for the main effect of stimulus on proportion of hits, pro
portion of false alarms, and response bias (BF10 = 8.953e36, BF10 =

4.929e35, BF10 = 3.789e57, respectively). For the interaction between 
stimulus type and stress stage, there was substantial evidence for the 
alternative hypothesis for overall accuracy (BF10 = 8.065) and sensi
tivity (BF10 = 7.519), strong evidence for response bias (BF10 = 24.390), 
and decisive evidence for proportion of hits (BF10 = 1037.883). All other 
results showed more evidence towards the null hypothesis, ranging from 
anecdotal to substantial evidence (i.e., from BF01 = 1.408 to BF01 =

9.524). We report all BFs and related information in Table G in sup
plementary materials. 

4. General discussion 

Across two preregistered experiments, we applied contemporary 
methodology from the eyewitness and fundamental memory fields to 
study the effects of acute stress at encoding and retrieval on face 
recognition performance. We induced stress with a validated laboratory 
stressor and verified the success of the stress induction physiologically in 
addition to standard subjective verification. To allow for a separation of 
stress effects at each memory phase, we inserted a 24 to 26-h interval 
between encoding and retrieval. Contrary to our hypotheses and pre
vious work both in the eyewitness and the fundamental memory fields, 
we found no effect of acute stress on face recognition memory during 
encoding or retrieval and no effects of encoding stress on word recog
nition memory. The interpretation of the findings as support of the null 
hypothesis were largely supported by substantial or strong evidence 
relying on Bayesian analyses (Jarosz & Wiley, 2014; Jeffreys, 1961; 
Raftery, 1995). 

Our findings contrast with previous fundamental work on stress and 
memory showing memory enhancement for faces encoded during a 
stressor (Wiemers et al., 2013) and memory impairment for faces 
retrieved after exposure to a stressor (Li et al., 2013). At the same time, 
our findings also contrast with previous eyewitness research suggesting 
negative effects of acute encoding stress on face recognition perfor
mance (Davis et al., 2019; Deffenbacher et al., 2004; Pezdek et al., 2020) 
although differences in methodology may explain these conflicting re
sults. Indeed, the most relevant eyewitness experiment, which examined 
acute stress effects on identification performance using similarly robust 
methodology and a lineup identification task, also found no effects of 
acute encoding stress on memory performance (Sauerland et al., 2016). 
These results coupled with our current null findings call into question 
the robustness and generalizability of past findings regarding the effects 
of acute stress on face recognition memory. 

The absence of effects of acute stress on word recognition is even 
more surprising, given the comprehensive literature supporting this idea 
(e.g., Abercrombie, Kalin, Thurow, Rosenkranz, & Davidson, 2003; 
Domes et al., 2002; Schwabe, Bohringer, Chatterjee, & Schachinger, 
2008; Zoladz et al., 2011). However, many such experiments showed 

(A)Experiment 1, Day 1

(B) Experiment 1, Day 2

(C)Experiment 2

Fig. 2. Negative affect scores over time in Experiments 1 and 2 across stress 
conditions. 
Note. Possible negative affect scores range between 10 and 50. Negative affect 
scores are from the Positive and Negative Affect Schedule. MAST = Maastricht 
Acute Stress Test. Error bars = 95% confidence intervals. = p < .05. 

6 Analyses after removing outliers (scores ≥ 2.5 SDs from the mean; see 
Table E in supplementary materials; Ns = 113/117) returned analogous pat
terns of results.  

7 Analyses after removing guesses (responses with ratings of less than 51% 
confidence; see Table F in supplementary materials; N = 120) showed the same 
pattern of results. In addition, main effects of stress stage emerged for two of the 
outcome variables, false alarms and d’. There was a greater proportion of false 
alarms (M = 0.337, SE = 0.016) and during the acute stress stage than during 
the delayed stage (M = 0.302, SE = 0.016). The main effect of stress stage for d’ 
was modified by the interaction between stimulus type and stress stage. 
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enhancement effects only under certain conditions. For example, some 
experiments showed enhancements only for positively valenced (but not 
neutral or negative words; Zoladz et al., 2011) or neutral words (but not 
positive or negative words; Schwabe, Bohringer, et al., 2008). Other 
experiments showed effects for participants classified as high cortisol 
responders (e.g., Domes et al., 2002), but not for the stress group as a 
whole. However, notably, results from Experiment 2 do mirror some 
other fundamental work demonstrating a lack of effect of cortisone 
administration (de Quervain, Roozendaal, Nitsch, McGaugh, & Hock, 
2000) or acute encoding stress (Domes, Heinrichs, Rimmele, Reichwald, 
& Hautzinger, 2004) on word recognition performance, suggesting that 
such findings are not entirely atypical. 

We also tested the effect of encoding stress both during and after the 
stress induction to examine potentially different effects of acute stress on 
stress stage (e.g., Quaedflieg & Schwabe, 2018; Shields et al., 2017). 
Effects during the stress induction reflect the reality of an eyewitness 

experience during a crime, whereas effects after the stress induction 
reflect the time window when cortisol exerts the strongest effect on 
memory. One previous study found recognition enhancements for items 
experienced during a stressor and 41–65 min post-stressor (Vogel & 
Schwabe, 2016). Although our stress induction was successful, we did 
not see any memory benefit for stressed participants in either stress 
stage. Timing differences might partially explain this discrepancy: the 
delayed stage in our study occurred around 34–39 min post-stressor 
onset, slightly earlier than the 41–65 min period specified in this 
earlier experiment. We designed our study to align with the anticipated 
cortisol peak (Joëls et al., 2011; Joëls & Baram, 2009; Quaedflieg & 
Schwabe, 2018). Still, other research also illustrates conflicting results at 
various stress stages, such as showing that encoding during a stressor 
impaired recognition memory (Schwabe & Wolf, 2014) or demon
strating that encoding immediately post-stressor, but not 30-minute 
post-stressor, enhanced recognition of positive words (Zoladz et al., 

Fig. 3. Systolic and diastolic blood pressure over time in Experiments 1 and 2 across stress conditions. 
Note. (A) = Experiment 1, Day 1. (B) = Experiment 1, Day 2. (C) = Experiment 2, Day 1. mmHg = millimeters of mercury. MAST = Maastricht Acute Stress Test 
(acute stress stage). Delayed = delayed stage. Faces and F/W = times when faces (and words) were encoded or recognized. Error bars = 95% confidence intervals. =
p < .05. 
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2011). Placing our null results alongside these mixed findings highlights 
the need for further investigations of the specific timeline regarding 
effects of acute encoding stress on recognition memory. 

Perhaps the most promising explanation for the lack of acute stress 
effects at both encoding and retrieval on recognition performance is to 
consider the type of memory test used. A meta-analysis examining 
cortisol administration effects on encoding and retrieval showed that 
effect sizes for recognition memory were smaller than effect sizes for free 
or cued recall memory (Het, Ramlow, & Wolf, 2005). Likewise, for 

retrieval stress, the effect of stress or cortisol seems to differ as a function 
of memory test type, with stronger negative effects for recall than 
recognition performance (de Quervain et al., 2000, 2003; Gagnon & 
Wagner, 2016; Wolf, 2017). The underlying mechanism could be that 
recognition memory relies on familiarity, whereas free recall requires 
recollection. Recall is associated with greater hippocampal dependency 
than recognition (Gagnon & Wagner, 2016). As a result, acute stress, 
which directly affects the hippocampus, may more strongly impair free 
recall, while sparing familiarity-based judgments. Thus, the type of 
memory test may influence encoding and retrieval stress effects on 
memory performance, perhaps explaining the null results in the current 
experiments. Directly comparing recognition and recall in future ex
periments could reveal valuable insights about the extent of effects of 
acute stress on different kinds of memory performance. 

The current experiments also have some limitations. In Experiment 
2, we found statistically significant cortisol increases in stressed par
ticipants. Examining salivary cortisol effects in Experiment 1 may also 
have provided a fuller picture of cortisol-related stress effects. For 
example, some research suggests negative effects of acute retrieval stress 
on memory emerge only in high cortisol responders (e.g., Buchanan & 
Tranel, 2008; Buchanan, Tranel, & Adolphs, 2006; Schönfeld et al., 
2014). Therefore, examining cortisol responder groups may have helped 
clarify the null effects of retrieval stress on recognition in Experiment 1. 
Further, in laboratory experiments—where stress inductions are con
strained by ethical considerations—results reflect mild to medium levels 
of acute stress, rather than severe levels of stress that may be present in 
certain extreme criminal contexts. The face recognition tasks in Exper
iments 1 and 2 also differed from one another in task difficulty. Unfa
miliar face recognition is already a difficult task (e.g., Hancock, Bruce, & 
Burton, 2000), and contrasts with other types of recognition tasks, in 

Fig. 4. Salivary Cortisol Level Pre- and Post- MAST in Experiment 2 Across 
Stress Conditions 
Note. MAST = Maastricht Acute Stress Test. Error bars = 95% confidence in
tervals. ⋆ = p < .05. 

Table 2 
Memory Performance Measures (Means and SDs) as a Function of Condition and Stress Stage and Inferential Statistics for Experiment 1.   

No stress Encoding stress Retrieval stress Encoding and 
retrieval stress  

Main effect 
stress stage 

Main effect 
condition 

Interaction stress stage 
x condition 

Stress stage Acute Delayed Acute Delayed Acute Delayed Acute Delayed 

Overall 
accuracy  

0.858 
(0.109)  

0.844 
(0.104)  

0.794 
(0.109)  

0.796 
(0.104)  

0.840 
(0.109)  

0.833 
(0.104)  

0.799 
(0.109)  

0.811 
(0.104) 

F 
p 
ηp

2  

0.0370 
.848 
< 0.001  

2.2960 
.0810 
.056  

0.3970 
.7560 
.010 

Hits (%)  0.800 
(0.164)  

0.789 
(0.175)  

0.733 
(0.164)  

0.736 
(0.175)  

0.772 
(0.164)  

0.775 
(0.175)  

0.697 
(0.164)  

0.756 
(0.175) 

F 
p 
ηp

2  

0.7130 
.4000 
.006  

1.4280 
.2380 
.036  

0.9710 
.4090 
.024 

False alarms 
(%)  

0.083 
(0.126)  

0.100 
(0.137)  

0.144 
(0.126)  

0.144 
(0.137)  

0.092 
(0.126)  

0.108 
(0.137)  

0.100 
(0.126)  

0.133 
(0.137) 

F 
p 
ηp

2  

2.3320 
.1290 
.020  

1.1760 
.3220 
.030  

0.3890 
.7610 
.010 

d’  1.842 
(0.887)  

2.228 
(0.676)  

1.844 
(0.887)  

1.882 
(0.676)  

2.076 
(0.887)  

2.141 
(0.767)  

1.783 
(0.887)  

1.955 
(0.767) 

F 
p 
ηp

2  

3.5980 
.0600 
.030  

0.9830 
.4030 
.025  

0.8250 
.4830 
.021 

c  − 0.468 
(0.394)  

− 0.203 
(0.400)  

− 0.228 
(0.394)  

− 0.224 
(0.400)  

− 0.313 
(0.394)  

− 0.215 
(0.400)  

− 0.433 
(0.394)  

− 0.203 
(0.400) 

F 
p 
ηp

2  

12.3080 
.0010 
.096  

0.7270 
.5380 
.018  

2.0010 
.1180 
.049 

Note. N = 120. d’ = sensitivity. c = response bias. Acute = acute stress stage. Delayed = delayed stage. Numbers in parentheses represent standard deviation. Findings 
that are statistically significant at the p < .05 level are in bold. A post-hoc Bonferroni test indicated more liberal responding at the acute stress stage (M = − 0.360, SE =
0.036) than at the delayed stage (M = − 0.211, SE = 0.037). 

Table 3 
Memory performance measures for words and faces as a function of stress condition and stress stage in Experiment 2.   

Words Faces 

Acute Delayed Acute Delayed 

Stress No stress Stress No stress Stress No stress Stress No stress 

Overall accuracy  0.694 (0.102)  0.682 (0.100)  0.676 (0.109)  0.672 (0.115)  0.639 (0.102)  0.650 (0.100)  0.703 (0.109)  0.664 (0.115) 
Hits (%)  0.777 (0.156)  0.792 (0.154)  0.732 (0.172)  0.715 (0.177)  0.496 (0.219)  0.487 (0.215)  0.586 (0.195)  0.534 (0.200) 
False alarms (%)  0.396 (0.180)  0.398 (0.177)  0.372 (0.164)  0.370 (0.161)  0.212 (0.156)  0.179 (0.154)  0.180 (0.164)  0.206 (0.169) 
d’  1.151 (0.656)  1.193 (0.653)  1.077 (0.656)  1.023 (0.653)  0.878 (0.719)  0.970 (0.714)  1.253 (0.719)  1.012 (0.714) 
c  0.276 (0.422)  0.308 (0.422)  0.175 (0.422)  0.138 (0.422)  − 0.457 (0.476)  − 0.544 (0.476)  − 0.390 (0.469)  − 0.434 (0.469) 

Note. N = 120. d’ = sensitivity. c = response bias. Acute = acute stress stage. Delayed = delayed stage. Numbers in parentheses represent standard deviation. 
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that participants see different images of the same faces at encoding and 
retrieval (as recommended, e.g., Burton, 2013), rather than seeing the 
exact same stimulus in both phases (e.g., as with words or images). 
Moreover, whereas participants saw each face twice during encoding in 
Experiment 1, they only encoded each face once in Experiment 2. 
Consequently, participants showed higher hit rates for faces in Experi
ment 1 than in Experiment 2. Although overall accuracy and sensitivity 
rates in Experiment 2 do not suggest floor effects for face recognition, 
the hit rates for faces in Experiment 2 were around chance level. Thus, 
although these hit rates are comparable to similar work with much 
shorter retention intervals (Davis et al., 2019; Pezdek et al., 2020), it is 
possible that floor effects for face recognition may not have allowed us 
to fully differentiate between individuals performing at such low levels 
for hit rate. Even so, results from Experiment 1, where hit rates did not 
show floor effects, similarly suggested an absence of acute stress on face 
recognition performance. 

Other limitations concern factors that could be further assessed in 
future research include sex/sex hormone status and stimuli valance, as 
past research suggest differences in stress responses depending on sex 
hormone status (e.g., Cahill, 2012; Hidalgo, Pulopulos, & Salvador, 
2019; Kudiekla et al., 2009; Nielsen, Segal, Worden, Yim, & Cahill, 

2013). Although our sample does not have enough statistical power to 
directly examine gender differences in a meaningful way, other samples 
may show reliable differences in cortisol responses or measures of 
memory performance depending on sex hormone status (cf. Shields, 
2020). Additionally, future research could examine possible interactions 
between stimulus and participant gender (e.g., Herlitz & Lovén, 2013). 
Furthermore, a more thorough examination of stimulus valence could 
advance this area of experimentation. Although meta-analyses found no 
evidence that stimulus valence moderates the effects of acute encoding 
stress on memory performance (Shields et al., 2017, but see Schwabe, 
Bohringer, et al., 2008; Zoladz et al., 2011), larger stress effects have 
emerged when examining retrieval stress effects on memory perfor
mance (e.g., Kuhlmann et al., 2005; Schönfeld et al., 2014). Examining 
the full range of valence options (e.g., neutral, positive, negative) and 
directly comparing faces and words would allow for a firmer conclusion. 
Finally, it is possible that smaller effects of acute stress on face recog
nition performance are present, but could not be detected in our ana
lyses, which had power to detect medium-large (Experiment 1) or 
medium (Experiment 2) effect sizes. 

A final limitation concerns generalizability to other populations. Our 
sample consisted exclusively of white participants and white target and 
filler faces, to limit any effects of the own-race bias (e.g., Meissner & 
Brigham, 2001). Exploring these research questions in more diverse 
samples, as well as examining acute stress effects on face recognition in 
cross-race contexts, is an important future step that has not yet been 
addressed by empirical research. Additionally, stress may affect children 
(Deffenbacher et al., 2004) or older adults (Hidalgo et al., 2019; Smith, 
Dijkstra, Gordon, Romero, & Thomas, 2019) differently to how it affects 
younger adults, the population examined in our sample. Thus, the cur
rent findings may not apply to other age groups. 

Crucially, future work on acute stress and face recognition memory 
should examine the encoding and retrieval memory phases, both 
fundamentally and in more applied settings. Understanding acute stress 
effects during both memory phases is valuable for applied forensic set
tings. To do so, ensuring that suitable manipulation checks and retention 
intervals are in place is essential. In addition, further exploring the in
tricacies of the acute stress timeline (e.g., stress stage) will be important 
for refining our knowledge of the specific situations when acute stress 
may enhance, impair, or not affect face recognition performance. 
Finally, careful use of terminology is critical, particularly when re
searchers use complex scenarios where several factors are likely at play, 
including stress, attention, cognitive load, and other factors (e.g., Wulff 
& Thomas, 2021). Disentangling these potential cumulative effects will 
help provide a much clearer picture on this applied topic. 

Table 4 
Inferential statistics for effects of condition, stimulus type, and stress stage on memory performance measures in Experiment 2.   

Main effect 
condition 

Main effect 
stimulus 

Main effect 
stress stage 

Interaction 
condition x stimulus 

Interaction condition 
x stress stage 

Interaction stimulus x 
stress stage 

Interaction condition x 
stimulus x stress stage 

Overall 
accuracy 

F  0.605  3.493  1.410  0.264  1.812  12.939  2.623 
p  0.438  0.064  0.238  0.609  0.181  <0.001  0.108 
ηp

2  0.005  0.029  0.012  0.002  0.015  0.099  0.022 
Hits (%) F  0.502  171.243  0.068  0.679  2.012  22.778  0.041 

p  0.480  <0.001  0.795  0.405  0.159  <0.001  0.841 
ηp

2  0.004  0.592  0.001  0.006  0.017  0.162  <0.001 
False alarms 

(%) 
F  0.005  164.373  1.337  0.014  1.209  1.157  1.904 
p  0.943  <0.001  0.274  0.905  0.274  0.284  0.170 
ηp

2  <0.001  0.582  0.010  <0.001  0.010  0.010  0.016 
d’ F  0.289  1.622  0.584  0.285  3.595  10.459  1.348 

p  0.592  0.205  0.446  0.594  0.060  0.002  0.248 
ηp

2  0.002  0.014  0.005  0.002  0.030  0.081  0.011 
c F  0.356  291.182  0.637  0.634  0.048  13.465  0.822 

p  0.552  <0.001  0.426  0.427  0.826  <0.001  0.366 
ηp

2  0.003  0.712  0.005  0.005  <0.001  0.102  0.007 

Note. N = 120. d’ = sensitivity. c = response bias. Acute = acute stress stage. Delayed = delayed stage. Findings that are statistically significant at the p < .05 level are in 
bold. 

Fig. 5. Response bias (c) across stress conditions for acute stress and delayed 
stages in Experiment 1. 
Note. Error bars = 95% confidence intervals. 
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4.1. Conclusion 

To conclude, our findings add to a growing body of research 
demonstrating an absence of stress effects on recognition performance. 
That is, previous eyewitness and fundamental experiments alike have 
obtained null effects of acute stress at encoding for face identification 
tasks (Sauerland et al., 2016), pictures (e.g., Goldfarb, Tompary, 
Davachi, & Phelps, 2019), and words (e.g., Domes et al., 2004). Addi
tionally, our results regarding retrieval stress support other findings that 
retrieval stress did not affect face recognition performance (Li et al., 
2014). Presently, researchers are beginning to use more robust meth
odology to investigate stress and cognition (see Shields, 2020), and 
aligning with best practice methods for hypothesis testing, such as 
conducting informed power analyses to gather sufficient sample sizes 
and following preregistered analysis plans. These scientific improve
ments will make for a stronger evidence base in this complex literature, 
as reduced power can lead to overestimations in statistically significant 
differences. A corpus of well-powered, reliable experiments will allow 
for a fuller understanding of the stress-memory relationship in general 
and specifically when examining memory for faces. 
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