3,460 research outputs found

    Managing the patient with osteogenesis imperfecta: a multidisciplinary approach

    Get PDF
    Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder characterized by low bone density. The type and severity of OI are variable. The primary manifestations are fractures, bone deformity, and bone pain, resulting in reduced mobility and function to complete everyday tasks. OI affects not only the physical but also the social and emotional well-being of children, young people, and their families. As such, medical, surgical, and allied health professionals' assessments all play a role in the management of these children. The multidisciplinary approach to the treatment of children and young people living with OI seeks to provide well-coordinated, comprehensive assessments, and interventions that place the child and family at the very center of their care. The coordinated efforts of a multidisciplinary team can support children with OI to fulfill their potential, maximizing function, independence, and well-being

    Speeding up gate operations through dissipation

    No full text
    It is commonly believed that decoherence is the main obstacle to quantum information processing. In contrast to this, we show how decoherence in the form of dissipation can improve the performance of certain quantum gates. As an example we consider the realisations of a controlled phase gate and a two-qubit SWAP operation with the help of a single laser pulse in atom-cavity systems. In the presence of spontaneous decay rates, the speed of the gates can be improved by a factor 2 without sacrificing high fidelity and robustness against parameter fluctuations. Even though this leads to finite gate failure rates, the scheme is comparable with other quantum computing proposals

    The Regularizing Capacity of Metabolic Networks

    Full text link
    Despite their topological complexity almost all functional properties of metabolic networks can be derived from steady-state dynamics. Indeed, many theoretical investigations (like flux-balance analysis) rely on extracting function from steady states. This leads to the interesting question, how metabolic networks avoid complex dynamics and maintain a steady-state behavior. Here, we expose metabolic network topologies to binary dynamics generated by simple local rules. We find that the networks' response is highly specific: Complex dynamics are systematically reduced on metabolic networks compared to randomized networks with identical degree sequences. Already small topological modifications substantially enhance the capacity of a network to host complex dynamic behavior and thus reduce its regularizing potential. This exceptionally pronounced regularization of dynamics encoded in the topology may explain, why steady-state behavior is ubiquitous in metabolism.Comment: 6 pages, 4 figure

    Model-based Cognitive Neuroscience: Multifield Mechanistic Integration in Practice

    Get PDF
    Autonomist accounts of cognitive science suggest that cognitive model building and theory construction (can or should) proceed independently of findings in neuroscience. Common functionalist justifications of autonomy rely on there being relatively few constraints between neural structure and cognitive function (e.g., Weiskopf, 2011). In contrast, an integrative mechanistic perspective stresses the mutual constraining of structure and function (e.g., Piccinini & Craver, 2011; Povich, 2015). In this paper, I show how model-based cognitive neuroscience (MBCN) epitomizes the integrative mechanistic perspective and concentrates the most revolutionary elements of the cognitive neuroscience revolution (Boone & Piccinini, 2016). I also show how the prominent subset account of functional realization supports the integrative mechanistic perspective I take on MBCN and use it to clarify the intralevel and interlevel components of integration

    Troubles with Bayesianism: An introduction to the psychological immune system

    Get PDF
    A Bayesian mind is, at its core, a rational mind. Bayesianism is thus well-suited to predict and explain mental processes that best exemplify our ability to be rational. However, evidence from belief acquisition and change appears to show that we do not acquire and update information in a Bayesian way. Instead, the principles of belief acquisition and updating seem grounded in maintaining a psychological immune system rather than in approximating a Bayesian processor

    Direct calculation of the hard-sphere crystal/melt interfacial free energy

    Get PDF
    We present a direct calculation by molecular-dynamics computer simulation of the crystal/melt interfacial free energy, γ\gamma, for a system of hard spheres of diameter σ\sigma. The calculation is performed by thermodynamic integration along a reversible path defined by cleaving, using specially constructed movable hard-sphere walls, separate bulk crystal and fluid systems, which are then merged to form an interface. We find the interfacial free energy to be slightly anisotropic with γ\gamma = 0.62±0.01\pm 0.01, 0.64±0.01\pm 0.01 and 0.58±0.01kBT/σ2\pm 0.01 k_BT/\sigma^2 for the (100), (110) and (111) fcc crystal/fluid interfaces, respectively. These values are consistent with earlier density functional calculations and recent experiments measuring the crystal nucleation rates from colloidal fluids of polystyrene spheres that have been interpreted [Marr and Gast, Langmuir {\bf 10}, 1348 (1994)] to give an estimate of γ\gamma for the hard-sphere system of 0.55±0.02kBT/σ20.55 \pm 0.02 k_BT/\sigma^2, slightly lower than the directly determined value reported here.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Learning, Social Intelligence and the Turing Test - why an "out-of-the-box" Turing Machine will not pass the Turing Test

    Get PDF
    The Turing Test (TT) checks for human intelligence, rather than any putative general intelligence. It involves repeated interaction requiring learning in the form of adaption to the human conversation partner. It is a macro-level post-hoc test in contrast to the definition of a Turing Machine (TM), which is a prior micro-level definition. This raises the question of whether learning is just another computational process, i.e. can be implemented as a TM. Here we argue that learning or adaption is fundamentally different from computation, though it does involve processes that can be seen as computations. To illustrate this difference we compare (a) designing a TM and (b) learning a TM, defining them for the purpose of the argument. We show that there is a well-defined sequence of problems which are not effectively designable but are learnable, in the form of the bounded halting problem. Some characteristics of human intelligence are reviewed including it's: interactive nature, learning abilities, imitative tendencies, linguistic ability and context-dependency. A story that explains some of these is the Social Intelligence Hypothesis. If this is broadly correct, this points to the necessity of a considerable period of acculturation (social learning in context) if an artificial intelligence is to pass the TT. Whilst it is always possible to 'compile' the results of learning into a TM, this would not be a designed TM and would not be able to continually adapt (pass future TTs). We conclude three things, namely that: a purely "designed" TM will never pass the TT; that there is no such thing as a general intelligence since it necessary involves learning; and that learning/adaption and computation should be clearly distinguished.Comment: 10 pages, invited talk at Turing Centenary Conference CiE 2012, special session on "The Turing Test and Thinking Machines
    corecore