4,301 research outputs found

    Black-fly and the Environment

    Get PDF

    Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts

    Full text link
    Starting with stochastic rate equations for the fundamental interactions between microbes and their viruses, we derive a mean field theory for the population dynamics of microbe-virus systems, including the effects of lysogeny. In the absence of lysogeny, our model is a generalization of that proposed phenomenologically by Weitz and Dushoff. In the presence of lysogeny, we analyze the possible states of the system, identifying a novel limit cycle, which we interpret physically. To test the robustness of our mean field calculations to demographic fluctuations, we have compared our results with stochastic simulations using the Gillespie algorithm. Finally, we estimate the range of parameters that delineate the various steady states of our model.Comment: 20 pages, 16 figures, 4 table

    Dynamic Multi-Objective Optimization With jMetal and Spark: a Case Study

    Get PDF
    Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Direct calculation of the hard-sphere crystal/melt interfacial free energy

    Get PDF
    We present a direct calculation by molecular-dynamics computer simulation of the crystal/melt interfacial free energy, γ\gamma, for a system of hard spheres of diameter σ\sigma. The calculation is performed by thermodynamic integration along a reversible path defined by cleaving, using specially constructed movable hard-sphere walls, separate bulk crystal and fluid systems, which are then merged to form an interface. We find the interfacial free energy to be slightly anisotropic with γ\gamma = 0.62±0.01\pm 0.01, 0.64±0.01\pm 0.01 and 0.58±0.01kBT/σ2\pm 0.01 k_BT/\sigma^2 for the (100), (110) and (111) fcc crystal/fluid interfaces, respectively. These values are consistent with earlier density functional calculations and recent experiments measuring the crystal nucleation rates from colloidal fluids of polystyrene spheres that have been interpreted [Marr and Gast, Langmuir {\bf 10}, 1348 (1994)] to give an estimate of γ\gamma for the hard-sphere system of 0.55±0.02kBT/σ20.55 \pm 0.02 k_BT/\sigma^2, slightly lower than the directly determined value reported here.Comment: 4 pages, 4 figures, submitted to Physical Review Letter

    Coherent anti-Stokes Raman scattering microscopy for quantitative characterization of mixing and flow in microfluidics

    Get PDF
    We present an optical, noninvasive and label-free approach to characterize flow profiles in microfluidic devices. Coherent anti-Stokes Raman scattering signals were used to map the mass transport in a microfluidic device that was then related back to the local flow rate of dilute solutes having constant fluid properties. Flow characterization was demonstrated in two common types of microfluidic devices, polydimethylsiloxane/glass square channels and wet-etched glass tapered channels

    Tunable Oscillations in the Purkinje Neuron

    Full text link
    In this paper, we study the dynamics of slow oscillations in Purkinje neurons in vitro, and derive a strong association with a forced parametric oscillator model. We demonstrate the precise rhythmicity of the oscillations in Purkinje neurons, as well as a dynamic tunability of this oscillation using a photo-switchable compound. We show that this slow oscillation can be induced in every Purkinje neuron, having periods ranging between 10-25 seconds. Starting from a Hodgkin-Huxley model, we also demonstrate that this oscillation can be externally modulated, and that the neurons will return to their intrinsic firing frequency after the forced oscillation is concluded. These results signify an additional functional role of tunable oscillations within the cerebellum, as well as a dynamic control of a time scale in the brain in the range of seconds.Comment: 12 pages, 5 figure

    Vehicle fleet emissions of black carbon, polycyclic aromatic hydrocarbons, and other pollutants measured by a mobile laboratory in Mexico City

    No full text
    International audienceBlack carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) are of concern due to their effects on climate and health. The main goal of this research is to provide the first estimate of emissions of BC and particle-phase PAHs (PPAHs) from motor vehicles in Mexico City. The emissions of other pollutants including carbon monoxide (CO), oxides of nitrogen (NOx), volatile organic compounds (VOCs), and particulate matter of diameter 2.5 ?m and less (PM2.5) are also estimated. As a part of the Mexico City Metropolitan Area field campaign in April 2003 (MCMA-2003), a mobile laboratory was driven throughout the city. The laboratory was equipped with a comprehensive suite of gas and particle analyzers, including an aethalometer that measured BC and a photoionization aerosol sensor that measured PPAHs. While driving through traffic, the mobile lab continuously sampled exhaust plumes from the vehicles around it. We have developed a method of automatically identifying exhaust plumes, which are then used as the basis for calculation of fleet-average emissions. In the approximately 75 h of on-road sampling during the field campaign, we have identified ~30 000 exhaust measurement points that represent a variety of vehicle types and driving conditions. The large sample provides a basis for estimating fleet-average emission factors and thus the emission inventory. Motor vehicles in the Mexico City area are estimated to emit 1700±200 metric tons BC, 57±6 tons PPAHs, 1 190 000±40 000 tons CO, 120 000±3000 tons NOx, 240 000±50 000 tons VOCs, and 4400±400 tons PM2.5 per year, not including cold start emissions. The estimates for CO, NOx, and PPAHs may be low by up to 10% due to the slower response time of analyzers used to measure these species. Compared to the government's official motor vehicle emission inventory for the year 2002, the estimates for CO, NOx, VOCs, and PM2.5 are 38% lower, 23% lower, 27% higher, and 25% higher, respectively. The distributions of emission factors of BC, PPAHs, and PM2.5 are highly skewed, i.e. asymmetric, while those for benzene, measured as a surrogate for total VOCs, and NOx are less skewed. As a result, the total emissions of BC, PPAHs, and PM2.5 could be reduced by approximately 50% if the highest 20% of data points were removed, but "super polluters" are less influential on overall NOx and VOC emissions
    corecore