2,481 research outputs found

    A combined oscillation cycle involving self-excited thermo-acoustic and hydrodynamic instability mechanisms

    Get PDF
    The paper examines the combined effects of several interacting thermo-acoustic and hydrodynamic instability mechanisms that are known to influence self-excited combustion instabilities often encountered in the late design stages of modern low-emission gas turbine combustors. A compressible large eddy simulation approach is presented, comprising the flame burning regime independent, modeled probability density function evolution equation/stochastic fields solution method. The approach is subsequently applied to the PRECCINSTA (PREDiction and Control of Combustion INSTAbilities) model combustor and successfully captures a fully self-excited limit-cycle oscillation without external forcing. The predicted frequency and amplitude of the dominant thermo-acoustic mode and its first harmonic are shown to be in excellent agreement with available experimental data. Analysis of the phase-resolved and phase- averaged fields leads to a detailed description of the superimposed mass flow rate and equivalence ratio fluctuations underlying the governing feedback loop. The prevailing thermo-acoustic cycle features regular flame liftoff and flashback events in combination with a flame angle oscillation, as well as multiple hydrodynamic phenomena, i.e., toroidal vortex shedding and a precessing vortex core. The periodic excitation and suppression of these hydrodynamic phenomena is confirmed via spectral proper orthogonal decomposition and found to be controlled by an oscillation of the instantaneous swirl number. Their local impact on the heat release rate, which is predominantly modulated by flame-vortex roll- up and enhanced mixing of fuel and oxidizer, is further described and investigated. Finally, the temporal relationship between the flame “surface area,” flame-averaged mixture fraction, and global heat release rate is shown to be directly correlated

    Large eddy simulation of an oscillating flame using the stochastic fields method

    Get PDF
    Large eddy simulation (LES) of a partially pre-mixed, swirl-stabilised flame is performed using atransported Probability Density Function approachsolved by the stochastic fields method to accountfor turbulence-chemistry interaction on the sub-gridscales. The corresponding sub-grid stresses and scalarfluxes are modelled via a dynamic version of theSmagorinsky model and a gradient diffusion approx-imation, respectively.A 15-step reduced methanemechanism including 19 species is employed for thedescription of all chemical reactions. The test case in-volves a widely studied gas turbine model combustorwith complex geometry and the simulation is carriedout for a specific operating condition involving an os-cillating flame. Overall, results of the velocity, temper-ature and major species mass fractions as well as theinstantaneous thermochemical properties are shown tobe in good agreement with experimental data, demon-strating the capabilities of the applied stochastic fieldsmethod. The inclusion of wall heat transfer in the com-bustion chamber is found to improve temperature pre-dictions, especially in the near-wall regions. In sum-mary, this work showcases the LES method’s accuracyand robustness - none of the default model parametersare adjusted - for an application to complex, partiallypremixed combustion problem

    An investigation of a turbulent spray flame using Large Eddy Simulation with a stochastic breakup model

    Get PDF
    A computational investigation of a turbulent methanol/air spray flame in which a poly-dispersed droplet distribution is achieved through the use of a pressure-swirl atomiser (also known as a simplex atomiser) is presented. A previously formulated stochastic approach towards the modelling of the breakup of droplets in the context of Large Eddy Simulation (LES) is extended to simulate methanol/air flames arising from simplex atomisers. Such atomisers are frequently used to deliver fine droplet distributions in both industrial and laboratory configurations where they often operate under low-pressure drop conditions. The paper describes improvements to the breakup model that are necessary to correctly represent spray formation from simplex atomisers operated under low-pressure drop conditions. The revised breakup model, when used together with the existing stochastic models for droplet dispersion and evaporation, is shown to yield simulated results for a non-reacting spray that agree well with the experimentally measured droplet distribution, spray dynamics and size-velocity correlation. The sub-grid scale (sgs) probability density function (pdf) approach in conjunction with the Eulerian stochastic field method are employed to represent the unknown interaction between turbulence and chemistry at the sub-filter level while a comprehensive kinetics model for methanol oxidation with 18 chemical species and 84 elementary steps is used to account for the gas-phase reaction. A qualitative comparison of the simulated OH images to those obtained from planar laser-induced fluorescence (PLIF) confirms that the essential features of this turbulent spray flame are well captured using the pdf approach. They include the location of the leading-edge combustion (or lift-off height) and the formation of a double reaction zone due to the polydisperse spray. In addition, the influence of the spray flame on the structure of the reacting spray in respect of the mean droplet diameters and spray velocities is reproduced to a good level of accuracy

    PGU6: DEVELOPMENT AND INITIAL PSYCHOMETRIC VALIDATION OF THE PATIENT ASSESSMENT OF UPPER GASTROINTESTINAL DISORDERS-QUALITY OF LIFE INSTRUMENT (PAGI-QOL) IN Gl PATIENTS

    Get PDF

    Phenomenological modelling of damage in polymer blends

    Get PDF
    To describe the constitutive behaviour of a certain class of polymer blends an elastoperfectly-viscoplastic and creep damageable material characterization is proposed. For a composite of 80 % Polystyrene and 20 % Ethylene Propylene Diene Monomer rubber (PSIEPDM) the specific parameters are determined from tensile tests in a particular range of strain velocities. To investigate the applicability of the model, the results of a finite element analysis for a laterally loaded thin plate (plane stress) with a circular hole are compared to measurements. Numerically calculated values are in reasonable agreement with reality; discrepancies can be ascribed to noise in experimental data. The finite element approach is evaluated with respect to the occurrence of mesh-dependence. Mesh-refinement shows convergence of solutions, attributable to the stabilizing influence of the viscous contribution in the constitutive equations

    Resistance training volume, energy balance and weight management: Rationale and design of a 9 month trial

    Get PDF
    The increased prevalence of obesity and the lack of treatment success both argue for the design and evaluation of strategies to prevent the development of overweight and obesity. To date, the role of resistance training (RT) in this regard is largely unexplored. RT may be effective for weight management as a result of increased fat-free mass (FFM), which may result in increased resting metabolic rate and increased physical activity energy expenditure. However, the literature relative to the efficacy of RT protocols recommended for healthy adults to alter the aforementioned parameters is inconsistent or inadequately evaluated. We will conduct a 9 month randomized controlled efficacy trial to compare changes in body composition (fat mass, FFM, % body fat) and energy balance in response to 2 volumes of RT (1 vs. 3 sets vs. non-exercise control) both at the completion of training (9 months) and 1 year later (body composition). This investigation will be conducted in a sample of healthy, normal and overweight, sedentary, young adult men and women; a group at high risk for development of overweight and obesity. Our results will provide information relative to the minimum volume of RT that may be associated with body weight/fat gain which may inform the development of guidelines for RT to prevent weight gain or to alter body composition

    Theranostic SPECT reconstruction for improved resolution: application to radionuclide therapy dosimetry

    Get PDF
    BACKGROUND: SPECT-derived dose estimates in tissues of diameter less than 3Ă— system resolution are subject to significant losses due to the limited spatial resolution of the gamma camera. Incorporating resolution modelling (RM) into the SPECT reconstruction has been proposed as a possible solution; however, the images produced are prone to noise amplification and Gibbs artefacts. We propose a novel approach to SPECT reconstruction in a theranostic setting, which we term SPECTRE (single photon emission computed theranostic reconstruction); using a diagnostic PET image, with its superior resolution, to guide the SPECT reconstruction of the therapeutic equivalent. This report demonstrates a proof in principle of this approach. METHODS: We have employed the hybrid kernelised expectation maximisation (HKEM) algorithm implemented in STIR, with the aim of producing SPECT images with PET-equivalent resolution. We demonstrate its application in both a dual 68Ga/177Lu IEC phantom study and a clinical example using 64Cu/67Cu. RESULTS: SPECTRE is shown to produce images comparable in accuracy and recovery to PET with minimal introduction of artefacts and amplification of noise. CONCLUSION: The SPECTRE approach to image reconstruction shows improved quantitative accuracy with a reduction in noise amplification. SPECTRE shows great promise as a method of improving SPECT radioactivity concentrations, directly leading to more accurate dosimetry estimates in small structures and target lesions. Further investigation and optimisation of the algorithm parameters is needed before this reconstruction method can be utilised in a clinical setting

    Minimum Aerosol Layer Detection Sensitivities and Their Subsequent Impacts on Aerosol Optical Thickness Retrievals in CALIPSO Level 2 Data Products

    Get PDF
    Due to instrument sensitivities and algorithm detection limits, level 2 (L2) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 532 nm aerosol extinction profile retrievals are often populated with retrieval fill values (RFVs), which indicate the absence of detectable levels of aerosol within the profile. In this study, using 4 years (20072008 and 20102011) of CALIOP version 3 L2 aerosol data, the occurrence frequency of daytime CALIOP profiles containing all RFVs (all-RFV profiles) is studied. In the CALIOP data products, the aerosol optical thickness (AOT) of any all-RFV profile is reported as being zero, which may introduce a bias in CALIOP-based AOT climatologies. For this study, we derive revised estimates of AOT for all-RFV profiles using collocated Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target (DT) and, where available, AErosol RObotic NEtwork (AERONET) data. Globally, all-RFV profiles comprise roughly 71 % of all daytime CALIOP L2 aerosol profiles (i.e., including completely attenuated profiles), accounting for nearly half (45 %) of all daytime cloud-free L2 aerosol profiles. The mean collocated MODIS DT (AERONET) 550 nm AOT is found to be near 0.06 (0.08) for CALIOP all-RFV profiles. We further estimate a global mean aerosol extinction profile, a so-called noise floor, for CALIOP all-RFV profiles. The global mean CALIOP AOT is then recomputed by replacing RFV values with the derived noise-floor values for both all-RFV and non-all-RFV profiles. This process yields an improvement in the agreement of CALIOP and MODIS over-ocean AOT

    Sheared Solid Materials

    Full text link
    We present a time-dependent Ginzburg-Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume {\it m}. For very small mm the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing {\it m}, accumulation of {\it m} around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.Comment: 16pages, 11figure
    • …
    corecore