3 research outputs found
Simvastatin decreases levodopa-induced dyskinesia in monkeys, but not in a randomized, placebo-controlled, multiple cross-over (“n-of-1”) exploratory trial of simvastatin against levodopa-induced dyskinesia in Parkinson's disease patients
International audienceBACKGROUND:Simvastatin may improve levodopa-induced dyskinesia through striatal Ras-extracellular signal-regulated kinase pathway modulation.METHODS:(1) Six 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated macaques were assessed for parkinsonism and dyskinesia severity following acute co-administration of levodopa and simvastatin (0, 1.5, 3 and 6 mg/kg). (2) A "n-of-1" design randomized, placebo-controlled, 3 cross-over trial was then conducted in 10 Parkinson's disease patients with troublesome dyskinesia. The primary endpoint was a 7-point scale rating subjective discomfort caused by troublesome dyskinesia. Secondary endpoints related to dyskinesia severity and duration and functional impairment, severity and duration of OFF periods, motor scores and investigator- and patient-rated global impressions. (3) The pharmacodynamic variable for both studies consisted in a multiplex analysis of kinase-induced phosphorylation in T and B-lymphocytes by flow cytometry.RESULTS:(1) In the macaque, simvastatin reduced dyskinesia scores (45%), at the dose of 3 mg/kg (2) In the "n-of-1" trial no significant response was observed in the primary end point and all secondary endpoints. No serious adverse events were reported. (3) Simvastatin 3 mg/kg significantly reduce kinase-induced phosphorylation in monkeys but not simvastatin 40 mg in patients.CONCLUSIONS:Simvastatin reduced dyskinesia in primates using high doses over 3 mg/kg but the exploratory trial in patients revealed no effect at 40 mg/d suggesting that higher doses, not compatible with a safe prolonged administration, are necessary
Clinical manifestations of intermediate allele carriers in Huntington disease
Objective: There is controversy about the clinical consequences of intermediate alleles (IAs) in Huntington disease (HD). The main objective of this study was to establish the clinical manifestations of IA carriers for a prospective, international, European HD registry. Methods: We assessed a cohort of participants at risk with <36 CAG repeats of the huntingtin (HTT) gene. Outcome measures were the Unified Huntington's Disease Rating Scale (UHDRS) motor, cognitive, and behavior domains, Total Functional Capacity (TFC), and quality of life (Short Form-36 [SF-36]). This cohort was subdivided into IA carriers (27-35 CAG) and controls (<27 CAG) and younger vs older participants. IA carriers and controls were compared for sociodemographic, environmental, and outcome measures. We used regression analysis to estimate the association of age and CAG repeats on the UHDRS scores. Results: Of 12,190 participants, 657 (5.38%) with <36 CAG repeats were identified: 76 IA carriers (11.56%) and 581 controls (88.44%). After correcting for multiple comparisons, at baseline, we found no significant differences between IA carriers and controls for total UHDRS motor, SF-36, behavioral, cognitive, or TFC scores. However, older participants with IAs had higher chorea scores compared to controls (p 0.001). Linear regression analysis showed that aging was the most contributing factor to increased UHDRS motor scores (p 0.002). On the other hand, 1-year follow-up data analysis showed IA carriers had greater cognitive decline compared to controls (p 0.002). Conclusions: Although aging worsened the UHDRS scores independently of the genetic status, IAs might confer a late-onset abnormal motor and cognitive phenotype. These results might have important implications for genetic counseling. ClinicalTrials.gov identifier: NCT01590589
Clinical and genetic characteristics of late-onset Huntington's disease
Background: The frequency of late-onset Huntington's disease (>59 years) is assumed to be low and the clinical course milder. However, previous literature on late-onset disease is scarce and inconclusive. Objective: Our aim is to study clinical characteristics of late-onset compared to common-onset HD patients in a large cohort of HD patients from the Registry database. Methods: Participants with late- and common-onset (30–50 years)were compared for first clinical symptoms, disease progression, CAG repeat size and family history. Participants with a missing CAG repeat size, a repeat size of ≤35 or a UHDRS motor score of ≤5 were excluded. Results: Of 6007 eligible participants, 687 had late-onset (11.4%) and 3216 (53.5%) common-onset HD. Late-onset (n = 577) had significantly more gait and balance problems as first symptom compared to common-onset (n = 2408) (P <.001). Overall motor and cognitive performance (P <.001) were worse, however only disease motor progression was slower (coefficient, −0.58; SE 0.16; P <.001) compared to the common-onset group. Repeat size was significantly lower in the late-onset (n = 40.8; SD 1.6) compared to common-onset (n = 44.4; SD 2.8) (P <.001). Fewer late-onset patients (n = 451) had a positive family history compared to common-onset (n = 2940) (P <.001). Conclusions: Late-onset patients present more frequently with gait and balance problems as first symptom, and disease progression is not milder compared to common-onset HD patients apart from motor progression. The family history is likely to be negative, which might make diagnosing HD more difficult in this population. However, the balance and gait problems might be helpful in diagnosing HD in elderly patients