285 research outputs found

    Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus Aureus

    Full text link
    Background: YlbF and YmcA are two essential proteins for the formation of biofilm, sporulation, and competence in Bacillus subtilis. In these two proteins, a new protein domain called com_ylbF was recently discovered, but its role and protein function has not yet been established. Objective: In this study, we identified and performed an “in silico” structural analysis of the YheA protein, another com_ylbF-containing protein, in the opportunistic pathogen Staphylococcus aureus. Methods: The search of the yheA gene was performed using BLAST-P and tBLASn algorithms. The three-dimensional (3D) models of YheA, as well as YlbF and YmcA proteins, were built using the I-TASSER and Quark programs. The identification of the native YheA in Staphylococcus aureus was carried out through chromatography using the FPLC system. Results: We found that YheA protein is more widely distributed in Gram-positive bacteria than YlbF and YmcA. Two new and important characteristics for YheA and other com_ylbF-containing proteins were found: a highly conserved 3D structure and the presence of a putative conserved motif located in the central region of the domain, which could be involved in its function. Additionally, we established that Staphylococcus aureus expresses YheA protein in both planktonic growth and biofilm. Finally, we suggest renaming YheA as glutamine-rich protein (Qrp) in S. aureus. Conclusion: The Grp (YheA), YlbF, and YmcA proteins adopt a highly conserved three-dimensional structure, harboring a protein-specific putative motif within the com_ylbF domain, which possibly favors the interaction with their substrates. Finally, Staphylococcus aureus expresses the Grp (YheA) protein in both planktonic and biofilm growth. </jats:sec

    Outbreak Of NDM-1-producing Klebsiella Pneumoniae In A Neonatal Unit In Colombia

    Full text link
    Six multiresistant, NDM-1-producing Klebsiella pneumoniae strains were recovered from an outbreak that affected six neonatal patients in a Colombian hospital. Molecular analysis showed that all of the isolates harbored the blaNDM-1, qnrA, and intI1 genes and were clonally related. Multilocus sequence typing showed that the isolates belonged to a new sequence type (ST1043) that was different from the sequence types that had previously been reported. This is the first report of NDM-1-producing isolates in South America

    Emergence and spread of a new community-genotype methicillin-resistant Staphylococcus aureus clone in Colombia

    Get PDF
    © 2017 The Author(s). Background: Community-genotype methicillin-resistant Staphylococcus aureus (CG-MRSA) clones are a global concern due to their resistance and increased virulence and their ability to cause infections both hospitalized patients and healthy people in the community. Here, we characterize 32 isolates of a new CG-MRSA clone. These isolates were identified in four cities in Colombia, South America. Methods: The isolates were recovered from four different epidemiological and prospective studies that were conducted in several regions of Colombia. Molecular characterizations included multilocus sequence typing; pulsed-field gel electrophoresis; SCCmec, agr and spa typing; and whole-genome sequencing. Results: All isolates belonged to ST923 (clonal complex 8), harbouring SCCmec IVa and a spa type t1635 and lacking an arginine catabolism mobile element. The isolates were classified as COL923, were resistant to at least one non-beta-lactam antibiotic, and exhibited high frequencies (>60%) of resistance to macrolides and tetracycline. Using whole-genome sequencing, we found that this new clone harbours novel prophage 3 and beta-island structures and a slightly different pathogenicity island 5. Moreover, isolates belonging to the COL923 clone are grouped in a different clade than USA300 and USA300-LV. Conclusion: Our results show the emergence and spread of the COL923 clone in different cities in Colombia. This clone is resistant to several antibiotics and possesses new structures in its mobile genetic elements

    First Report and Comparative Genomics Analysis of a blaOXA-244-Harboring Escherichia coli Isolate Recovered in the American Continent

    Full text link
    The carbapenemase OXA-244 is a derivate of OXA-48, and its detection is very difficult in laboratories. Here, we report the identification and genomic analysis of an Escherichia coli isolate (28Eco12) harboring the blaOXA-244 gene identified in Colombia, South America. The 28Eco12 isolate was identified during a retrospective study, and it was recovered from a patient treated in Colombia. The complete nucleotide sequence was established using the PacBio platform. A comparative genomics analysis with other blaOXA-244–harboring Escherichia coli strains was performed. The 28Eco12 isolate belonged to sequence type (ST) 38, and its genome was composed of two molecules, a chromosome of 5,343,367 bp and a plasmid of 92,027 bp, which belonged to the incompatibility group IncY and did not harbor resistance genes. The blaOXA-244 gene was chromosomally encoded and mobilized by an ISR1-related Tn6237 composite transposon. Notably, this transposon was inserted and located within a new genomic island. To our knowledge, this is the first report of a blaOXA-244–harboring Escherichia coli isolate in America. Our results suggest that the introduction of the OXA-244-producing E. coli isolate was through clonal expansion of the ST38 pandemic clone. Other isolates producing OXA-244 could be circulating silently in America.</jats:p

    First complete Providencia rettgeri genome sequence, the NDM-1-producing clinical strain RB151

    Full text link
    © 2017 Marquez-Ortiz et al. Providencia rettgeri is an opportunistic bacterial pathogen of clinical significance due to its association with urinary tract infections and multidrug resistance. Here, we report the first complete genome sequence of P. rettgeri. The genome of strain RB151 consists of a 4.8-Mbp chromosome and a 108-kbp blaNDM-1-positive plasmid

    Dual membrane-spanning anti-sigma factors regulate vesiculation in Bacteroides thetaiotaomicron

    Get PDF
    Bacteroidota are abundant members of the human gut microbiota that shape the enteric landscape by modulating host immunity and degrading dietary- and host-derived glycans. These processes are mediated in part b

    Identification of a Human SOCS1 Polymorphism That Predicts Rheumatoid Arthritis Severity

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by an autoimmune response in the joints and an exacerbation of cytokine responses. A minority of patients with RA experience spontaneous remission, but most will show moderate/high disease activity, with aggressive joint damage and multiple systemic manifestations. There is thus is a great need to identify prognostic biomarkers for disease risk to improve diagnosis and prognosis, and to inform on the most appropriate therapy. Here we focused on suppressor of cytokine signaling 1 (SOCS1), a physiological negative regulator of cytokines that modulates cell activation. Using four independent cohorts of patients with arthritis, we characterized the correlation between SOCS1 mRNA levels and clinical outcome. We found a significant inverse correlation between SOCS1 mRNA expression and disease activity throughout the follow-up of patients with RA. Lower baseline SOCS1 levels were associated with poorer disease control in response to methotrexate and other conventional synthetic disease-modifying anti-rheumatic drugs in early arthritis, and to rituximab in established (active) RA. Moreover, we identified several single nucleotide polymorphisms in the SOCS1 gene that correlated with SOCS1 mRNA expression, and that might identify those patients with early arthritis that fulfill RA classification criteria. One of them, rs4780355, is in linkage disequilibrium with a microsatellite (TTTTC)3−5, mapped 0.9 kb downstream of the SNP, and correlated with reduced SOCS1 expression in vitro. Overall, our data support the association between SOCS1 expression and disease progression, disease severity and response to treatment in RA. These observations underlie the relevance of SOCS1 mRNA levels for stratifying patients prognostically and guiding therapeutic decisions
    corecore