50 research outputs found

    Inter-molekulare Lokalisation der ATP-Bindungstasche in P2X-Rezeptoren durch Disulfid-Quervernetzung Cystein-substituierter AminosÀuren

    Get PDF
    Die trimeren P2X–Rezeptoren sind nicht–selektive KationenkanĂ€le, die durch Adenosintriphosphat (ATP) aktiviert werden. Es gibt sieben Untereinheiten (P2X1–7). P2X–Rezeptoren sind in nahezu jedem Gewebe exprimiert und dort an den verschiedensten physiologischen VorgĂ€ngen beteiligt. Neben den „Cys–Loop“–Rezeptoren und den ionotropen Glutamat–Rezeptoren stellen die P2X–Rezeptoren eine eigenstĂ€ndige Familie von Neurotransmitter–gesteuerten Rezeptoren dar. Eine Untereinheit der trimeren P2X–Rezeptoren besteht aus den intrazellulĂ€ren N– und C–Termini und zwei TransmembrandomĂ€nen, die ĂŒber eine große extrazellulĂ€re DomĂ€ne verbunden sind. Da weder ein P2X–homologes lösliches Protein fĂŒr Kristallisationsstudien noch ein Gewebe zur Aufreinigung großer Mengen von P2X–Rezeptorprotein zur VerfĂŒgung steht, stĂŒtzen sich Struktur–Funktions–Studien auf einzelpunktmutierte Rezeptoren in heterologen Expressionsystemen. Einige AminosĂ€uren, die bei Austausch gegen Alanin eine deutliche Verschiebung der Dosis–Wirkungs–Kurve von ATP bewirken und von denen daher vermutet wird, dass sie an der Agonisten–Bindung beteiligt sind, wurden bereits identifiziert. Ob sich die Agonisten–Bindungstasche der P2X–Rezeptoren zwischen zwei Untereinheiten, wie bei den nikotinischen Acetylcholin–Rezeptoren, oder innerhalb einer Untereinheit, vergleichbar mit den ionotropen Glutamat–Rezeptoren, befindet, ist weitgehend ungeklĂ€rt. Um die Lokalisation der ATP–Bindungstasche zu bestimmen, wurden, basierend auf vorhandener Literatur, potenziell an der ATP–Bindung beteiligte AminosĂ€uren des P2X1–Rezeptors durch zielgerichtete Mutagenese gegen Cysteine ausgetauscht und die P2X–Rezeptormutanen in Xenopus laevis–Oozyten exprimiert. Das Ziel dabei war, quervernetzte Cystein–Mutanten durch DisulfidbrĂŒckenbildung zwischen den substituierten Cysteinen zu identifizieren und so die Distanz von AminosĂ€ure–Seitenketten, die an der Agonisten–Bindung beteiligt sind, zu bestimmen. FĂŒr die biochemischen Untersuchungen wurden entweder alle neu gebildeten Proteine der Oozyten metabolisch durch Inkubation mit radioaktivem [35S]–Methionin oder selektiv die Plasmamembran– stĂ€ndigen Proteine mit Sulfo–NHS–Fluoreszenz–Farbstoffen markiert. Die Rezeptormutanten wurden affinitĂ€tschromatographisch ĂŒber ein N–terminales Hexahystidyl–Motiv unter nicht–denaturierenden Bedingungen aufgereinigt und mit nicht–reduzierender SDS–Polyacrylamid–Gelelektrophorese (PAGE) auf Expression sowie mit Blauer–Nativer–PAGE auf korrekte Trimerisierung ĂŒberprĂŒft. DarĂŒber hinaus wurden homologe Cystein–Substitutionen einer P2X2–1–ChimĂ€re, welche dieselben Bindungseigenschaften des P2X1–Rezeptors besitzt, mittels der Zwei–Elektroden–Spannungsklemme charakterisiert (TEVC). Die Koexpression der verschiedenen P2X–Mutanten ergab eine spontane Quervernetzung ĂŒber DisulfidbrĂŒcken zwischen den P2X1 K68C– und F291C–Mutanten, die in nicht–reduzierenden SDS–PAGE–Gelen ĂŒber eine Dimerbildung nachgewiesen werden konnte. Dies deutet auf eine geringe Distanz zwischen diesen Cystein–substituierten AminosĂ€uren hin. Die Ausbildung der DisulfidbrĂŒcke konnte nach Reduktion der Quervernetzung wĂ€hrend der Aufreinigung und durch Zugabe von ATP verhindert werden. In funktionellen Studien der P2X2–1 K68C/F291C–Doppelmutante war es entsprechend möglich die DisulfidbrĂŒcke reversibel zu reduzierenden. In den MutantenkanĂ€le exprimierenden Xenopus–Oozyten wurde der geringe Rezeptorstrom durch Reduktion mit DTT ca. 60fach potenziert und dadurch ĂŒberhaupt messbar gemacht. Die Reoxidation durch H2O2 wurde wie in den biochemischen Experimenten in Anwesenheit von ATP ebenfalls verhindert. Da die AminosĂ€uren K68 und F291 des P2X1–Rezeptors möglicherweise an der Agonisten–Bindung beteiligt sind, sind diese Ergebnisse die ersten direkten experimentellen Hinweise auf die Aposition von DomĂ€nen benachbarter Untereinheiten, die an der Agonisten–Bindung beteiligt sind. Demnach befindet sich die ATP–Bindungstasche an der GrenzflĂ€che zwischen zwei Untereinheiten der P2X–Rezeptoren. Die Koexpression homologer Cystein–substituierter P2X2–, P2X3– und P2X4–Rezeptoren zeigte analog zu den P2X1–Experimenten eine spontane Dimerisierung der P2X2 K69C– und F289C–Mutanten. Eine mĂ€ĂŸige Quervernetzung von zwei Untereinheiten der P2X3 K63C– und F280C– sowie der P2X4 K67C– und F294C–Mutanten konnte nach Anwendung einer ca. 0,5 nm langen Cystein–spezifischen quervernetzenden Substanz erreicht werden. Die paarweise Kombination der P2X1–, P2X2–, P2X3–und P2X4–Cystein–Mutanten zeigte selbst nach Anwendung quervernetzender Substanzen nur in der Kombination von P2X1–K68C und P2X2–F289C eine Quervernetzung von zwei unterschiedlichen Untereinheiten eines heteromeren P2X1/2–Rezeptors. Diese Kombination konnte in elektrophysiologischen Messungen durch Reduktion der DisulfidbrĂŒcke spezifisch messbar gemacht und somit die Heteromerisierung dieser Untereinheiten eindeutig aufgezeigt werden. Zusammenfassend deutet die geringe Distanz der an der Quervernetzung beteiligten Cystein–Mutationen der P2X1–, P2X2– und homomeren P2X1/2–Rezeptoren auf ein konserviertes strukturelles Motiv dieser P2X–Subtypen hin, welches in P2X3– und P2X4–Rezeptoren nicht konserviert zu sein scheint. Diese Ergebnisse liefern wichtige Hinweise auf die generelle Struktur der P2X–Rezeptoren und werden maßgeblich zur Interpretation einer zukĂŒnftigen Kristallstruktur beitragen

    Contribution of the region Glu181 to Val200 of the extracellular loop of the human P2X1 receptor to agonist binding and gating revealed using cysteine scanning mutagenesis1

    Get PDF
    At the majority of mutants in the region Glu181-Val200 incorporating a conserved AsnPheThrΊΊxLys motif cysteine substitution had no effect on sensitivity to ATP, partial agonists, or methanethiosulfonate (MTS) compounds. For the F185C mutant the efficacy of partial agonists was reduced by ∌ 90% but there was no effect on ATP potency or the actions of MTS reagents. At T186C, F188C and K190C mutants ATP potency and partial agonists responses were reduced. The ATP sensitivity of the K190C mutant was rescued towards WT levels by positively charged (2-aminoethyl)methanethiosulfonate hydrobromide and reduced by negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate. Both MTS reagents decreased ATP potency at the T186C mutant, and abolished responses at the F195C mutant. 32P-2-azido ATP binding to the mutants T186C and K190C was sensitive to MTS reagents consistent with an effect on binding, however binding at F195C was unaffected indicating an effect on gating. The accessibility of the introduced cysteines was probed with (2-aminoethyl)methanethiosulfonate hydrobromide-biotin, this showed that the region Thr186-Ser192 is likely to form a beta sheet and that accessibility is blocked by ATP. Taken together these results suggest that Thr186, Phe188 and Lys190 are involved in ATP binding to the receptor and Phe185 and Phe195 contribute to agonist evoked conformational changes

    Role of the domain encompassing Arg304–Ile328 in rat P2X2 receptor conformation revealed by alterations in complex glycosylation at Asn298

    Get PDF
    The final 25 amino acids of the ectodomain of the P2X receptors, immediately prior to the second TM (transmembrane domain) (pre-TM2: Arg304–Ile328 in rat P2X2), are highly conserved. Whole-cell patch clamp recordings showed that single cysteine substitutions in the N-terminal half of pre-TM2 (Arg304–Ile314) led to loss of function at Arg304, Leu306, Lys308 and Ile312. Cysteine substitutions within this region also resulted in a significant reduction in the apparent molecular mass of receptors, due to loss of complex glycosylation at the nearby acceptor site Asn298, which was not seen for the C-terminal portion of pre-TM2 (Asp315–Ile328). The reduction in complex glycosylation was not due to reduced cell-surface presentation, demonstrating that glycosylation at Asn298 was acting as a sensor of subtle changes in receptor conformation within the pre-TM2 region. When this N-glycan site was repositioned closer to the plasma membrane by mutagenesis (N298S together with G299N, T300N, T301N or T303N), glycosylation was restored at G299N and T300N, but was impaired for T301N and completely absent for T303N. These results suggest that the region in the vicinity of Asp315 is at the plasma membrane interface and that the N-terminal portion of pre-TM2 (Arg304–Ile314) is important for the correct conformation of the receptor at the extracellular face of the membrane

    Conformational changes during human P2X7 receptor activation examined by structural modelling and cysteine-based cross-linking studies

    Get PDF
    The P2X7 receptor (P2X7R) is important in mediating a range of physiological functions and pathologies associated with tissue damage and inflammation and represents an attractive therapeutic target. However, in terms of their structure-function relationships, the mammalian P2X7Rs remain poorly characterised compared to some of their other P2XR counterparts. In this study, combining cysteine-based cross-linking and whole-cell patch-clamp recording, we examined six pairs of residues (A44/I331, D48/I331, I58/F311, S60/L320, I75/P177 and K81/V304) located in different parts of the extracellular and transmembrane domains of the human P2X7R. These residues are predicted to undergo substantial movement during the transition of the receptor ion channel from the closed to the open state, predictions which are made based on structural homology models generated from the crystal structures of the zebrafish P2X4R. Our results provide evidence that among the six pairs of cysteine mutants, D48C/I133C and K81C/V304C formed disulphide bonds that impaired the channel gating to support the notion that such conformational changes, particularly those in the outer ends of the transmembrane domains, are critical for human P2X7R activation

    Calcium-dependent block of P2X7 receptor channel function is allosteric

    Get PDF
    Among purinergic P2X receptor (P2XR) channels, the P2X7R exhibits the most complex gating kinetics; the binding of orthosteric agonists at the ectodomain induces a conformational change in the receptor complex that favors a gating transition from closed to open and dilated states. Bath Ca2+ affects P2X7R gating through a still uncharacterized mechanism: it could act by reducing the adenosine triphosphate4− (ATP4−) concentration (a form proposed to be the P2X7R orthosteric agonist), as an allosteric modulator, and/or by directly altering the selectivity of pore to cations. In this study, we combined biophysical and mathematical approaches to clarify the role of calcium in P2X7R gating. In naive receptors, bath calcium affected the activation permeability dynamics indirectly by decreasing the potency of orthosteric agonists in a concentration-dependent manner and independently of the concentrations of the free acid form of agonists and status of pannexin-1 (Panx1) channels. Bath calcium also facilitated the rates of receptor deactivation in a concentration-dependent manner but did not affect a progressive delay in receptor deactivation caused by repetitive agonist application. The effects of calcium on the kinetics of receptor deactivation were rapid and reversible. A438079, a potent orthosteric competitive antagonist, protected the rebinding effect of 2’(3â€Č)-O-4-benzoylbenzoyl)ATP on the kinetics of current decay during the washout period, but in the presence of A438079, calcium also increased the rate of receptor deactivation. The corresponding kinetic (Markov state) model indicated that the decrease in binding affinity leads to a decrease in current amplitudes and facilitation of receptor deactivation, both in an extracellular calcium concentration–dependent manner expressed as a Hill function. The results indicate that calcium in physiological concentrations acts as a negative allosteric modulator of P2X7R by decreasing the affinity of receptors for orthosteric ligand agonists, but not antagonists, and not by affecting the permeability dynamics directly or indirectly through Panx1 channels. We expect these results to generalize to other P2XRs

    Heterologous Expression and Patch-Clamp Recording of P2X Receptors in HEK293 Cells

    Get PDF
    P2X receptors (P2XRs) are ligand-gated ion channels gated by extracellular adenosine 5â€Č-triphosphate (ATP) and play a critical role in mediating ATP-induced purinergic signaling in physiological and pathological processes. Heterologous expression of P2XR in human embryonic kidney 293 (HEK293) cells and measurement of P2XR-mediated currents using patch-clamp recording technique have been widely used to study the biophysical and pharmacological properties of these receptors. Combination of electrophysiology with site-directed mutagenesis and structural information has shed light on the molecular basis for receptor activation and mechanisms of actions by receptor antagonists and modulators. It is anticipated that such methodologies will continue helping us to provide more mechanistic understanding of P2XRs and to test novel receptor antagonists and allosteric modulators for therapeutical purposes. In this chapter, we describe protocols of transiently or stably expressing the P2XR in HEK293 cells and measuring P2XR-mediated currents by using whole-cell recording

    Activation of the P2X7 ion channel by soluble and covalently bound ligands

    Get PDF
    The homotrimeric P2X7 purinergic receptor has sparked interest because of its capacity to sense adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD) released from cells and to induce calcium signaling and cell death. Here, we examine the response of arginine mutants of P2X7 to soluble and covalently bound ligands. High concentrations of ecto-ATP gate P2X7 by acting as a soluble ligand and low concentrations of ecto-NAD gate P2X7 following ADP-ribosylation at R125 catalyzed by toxin-related ecto-ADP-ribosyltransferase ART2.2. R125 lies on a prominent cysteine-rich finger at the interface of adjacent receptor subunits, and ADP-ribosylation at this site likely places the common adenine nucleotide moiety into the ligand-binding pocket of P2X7

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link
    corecore