32 research outputs found

    Multiwavelength, aerosol lidars at Maïdo supersite, Reunion Island, France: instruments description, data processing chain and quality assessment

    Get PDF
    Understanding optical and radiative properties of aerosols and clouds is critical to reduce uncertainties in climate models. For over 10 years, the Observatory of Atmospheric Physics of La Réunion (OPAR) has been operating three active lidar instruments (named Li1200, LiO3S and LiO3T) providing time-series of vertical profiles from 3 to 45 km of the aerosol extinction and backscatter coefficients at 355 and 532 nm, as well as the linear depolarization ratio at 532 nm. This work provides a full technical description of the three systems, details about the methods chosen for the signal preprocessing and processing, and an uncertainty analysis. About 1737 night-time averaged profiles were manually screened to provide cloud-free and artifact-free profiles. Data processing consisted in Klett inversion to retrieve aerosol optical products from preprocessed files. The measurement frequency was lower during the wet season and the holiday periods. There is a good correlation between the Li1200 and LiO3S in terms of stratospheric AOD at 355 nm (0.001–0.107; R = 0.92 ± 0.01), and with the LiO3T in terms of Angström exponent 355/532 (0.079–1.288; R = 0.90 ± 0.13). The lowest values of the averaged uncertainty of the aerosol backscatter coefficient for the three time-series are 64.4 ± 31.6 % for the LiO3S, 50.3 ± 29.0 % for the Li1200, and 69.1 ± 42.7 % for the LiO3T. These relative uncertainties are high for the three instruments because of the very low values of extinction and backscatter coefficients for background aerosols above Maïdo observatory. Uncertainty increases due to SNR decrease above 25 km for the LIO3S and Li1200, and 20 km for the LiO3T. The LR is responsible for an uncertainty increase below 18 km (10 km) for the LiO3S and Li1200 (LiO3T). The LiO3S is the most stable instrument at 355 nm due to less technical modifications and less misalignments. The Li1200 is a valuable addition to fill in the gaps in the LiO3S time-series at 355 nm or for specific case-studies about the middle and low troposphere. Data described in this work are available at https://doi.org/10.26171/rwcm-q370 (Gantois et al., 2024)

    Effets d'exaltations par des nanostructures métalliques : application à la microscopie Raman en Champ Proche

    No full text
    Ces travaux de thĂšse portent sur les phĂ©nomĂšnes d’amplification du signal de diffusion Raman par effet de surface et par effet de pointe. Des rĂ©seaux de motifs mĂ©talliques de taille nanomĂ©trique arrangĂ©s spatialement ont Ă©tĂ© fabriquĂ©s par la mĂ©thode de transfert Langmuir-Blodgett et par lithographie Ă  faisceau d’électrons. De telles structures de gĂ©omĂ©tries contrĂŽlĂ©es dĂ©posĂ©es Ă  la surface de lamelles de microscope ont Ă©tĂ© dĂ©veloppĂ©es afin d’amplifier le signal Raman de molĂ©cules adsorbĂ©es par effet SERS (Surface Enhanced Raman Spectroscopy). Ces nanostructures triangulaires en or de taille proche de la longueur d’onde ont des bandes de rĂ©sonance plasmon dans le domaine spectral visible. En utilisant une source de laser appropriĂ©e dans ce domaine spectral, les facteurs d’amplification Raman d’une couche mono-molĂ©culaire d’un dĂ©rivĂ© azobenzĂšne sont de plusieurs ordres de grandeur, et ce pour les deux techniques de nano-lithographie employĂ©es. Afin de complĂ©ter ces premiers rĂ©sultats, des rĂ©seaux de fils d’or avec de grands facteurs de forme ont Ă©tĂ© fabriquĂ©s. Ces derniers montrent des rĂ©sonances plasmons multipolaires et des facteurs d’amplification de l’ordre de 105. Les techniques de microscopie en champ proche ont Ă©galement Ă©tĂ© dĂ©veloppĂ©es afin de localiser prĂ©cisĂ©ment l’exaltation Raman et d’accroitre la rĂ©solution spatiale de mesures Raman. Des pointes mĂ©talliques en or de taille nanomĂ©trique ont ainsi permis d’amplifier localement le signal de diffusion de molĂ©cules placĂ©es Ă  leur proximitĂ© par effet TERS (Tip Enhanced Raman Spectroscopy). Les dĂ©veloppements logiciels et mĂ©caniques entre un microscope confocal Raman et un microscope Ă  force atomique ont Ă©tĂ© implĂ©mentĂ©s afin de contrĂŽler simultanĂ©ment les deux instruments. Ce montage expĂ©rimental a Ă©tĂ© appliquĂ© Ă  l’étude de nanofils semi-conducteurs de nitrure de gallium permettant de suivre leur signal vibrationnel avec une rĂ©solution spatiale infĂ©rieure Ă  200 nm.This thesis work focuses on Raman scattering enhancements by metallic nanostructures. In the first part of this work, arrays of metallic patterns with nanometer dimensions were fabricated by the Langmuir-Blodgett deposition technique and electron-beam lithography. Such structures made of gold were fabricated onto microscope slides with the goal to enhance the Raman signal through SERS effect (Surface Enhanced Raman Spectroscopy). These patterns formed by an assembly of triangular nanostructures with sizes of hundreds of nanometers, exhibit plasmon resonance bands in the visible spectral region. By using an appropriate excitation laser source with respect to the plasmon frequency, Raman enhancement factors of a monolayer were found to be of several order of magnitude for both Langmuir-Blodgett and electron-beam lithography platforms. To further complement these results, gold wires arrays with large aspect ratio made by electron-beam lithography showed multipolar plasmon resonances with enhancement factors up to 105. In the second part of this thesis, near-field Raman microscopy has been developed with the aim to localize precisely the Raman enhancement and improve spatial resolution of Raman measurements. Atomic force microscopy gold tips have been used to locally enhance scattering signal of molecules in close proximity to the tip opening new opportunities. This approach known as TERS (Tip Enhanced Raman Spectroscopy) is of significant interest to probe nanomaterials, nanostructures or monolayers. Software and mechanical developments have been made between a confocal Raman microscope and an atomic force microscope to control simultaneously both instruments. This experimental setup was used to characterize gallium nitride semi-conductors nanowires with spatial resolution better than 200 nm

    Effets d'exaltations par des nanostructures métalliques : application à la microscopie Raman en Champ Proche

    No full text
    Ces travaux de thĂšse portent sur les phĂ©nomĂšnes d’amplification du signal de diffusion Raman par effet de surface et par effet de pointe. Des rĂ©seaux de motifs mĂ©talliques de taille nanomĂ©trique arrangĂ©s spatialement ont Ă©tĂ© fabriquĂ©s par la mĂ©thode de transfert Langmuir-Blodgett et par lithographie Ă  faisceau d’électrons. De telles structures de gĂ©omĂ©tries contrĂŽlĂ©es dĂ©posĂ©es Ă  la surface de lamelles de microscope ont Ă©tĂ© dĂ©veloppĂ©es afin d’amplifier le signal Raman de molĂ©cules adsorbĂ©es par effet SERS (Surface Enhanced Raman Spectroscopy). Ces nanostructures triangulaires en or de taille proche de la longueur d’onde ont des bandes de rĂ©sonance plasmon dans le domaine spectral visible. En utilisant une source de laser appropriĂ©e dans ce domaine spectral, les facteurs d’amplification Raman d’une couche mono-molĂ©culaire d’un dĂ©rivĂ© azobenzĂšne sont de plusieurs ordres de grandeur, et ce pour les deux techniques de nano-lithographie employĂ©es. Afin de complĂ©ter ces premiers rĂ©sultats, des rĂ©seaux de fils d’or avec de grands facteurs de forme ont Ă©tĂ© fabriquĂ©s. Ces derniers montrent des rĂ©sonances plasmons multipolaires et des facteurs d’amplification de l’ordre de 105. Les techniques de microscopie en champ proche ont Ă©galement Ă©tĂ© dĂ©veloppĂ©es afin de localiser prĂ©cisĂ©ment l’exaltation Raman et d’accroitre la rĂ©solution spatiale de mesures Raman. Des pointes mĂ©talliques en or de taille nanomĂ©trique ont ainsi permis d’amplifier localement le signal de diffusion de molĂ©cules placĂ©es Ă  leur proximitĂ© par effet TERS (Tip Enhanced Raman Spectroscopy). Les dĂ©veloppements logiciels et mĂ©caniques entre un microscope confocal Raman et un microscope Ă  force atomique ont Ă©tĂ© implĂ©mentĂ©s afin de contrĂŽler simultanĂ©ment les deux instruments. Ce montage expĂ©rimental a Ă©tĂ© appliquĂ© Ă  l’étude de nanofils semi-conducteurs de nitrure de gallium permettant de suivre leur signal vibrationnel avec une rĂ©solution spatiale infĂ©rieure Ă  200 nm.This thesis work focuses on Raman scattering enhancements by metallic nanostructures. In the first part of this work, arrays of metallic patterns with nanometer dimensions were fabricated by the Langmuir-Blodgett deposition technique and electron-beam lithography. Such structures made of gold were fabricated onto microscope slides with the goal to enhance the Raman signal through SERS effect (Surface Enhanced Raman Spectroscopy). These patterns formed by an assembly of triangular nanostructures with sizes of hundreds of nanometers, exhibit plasmon resonance bands in the visible spectral region. By using an appropriate excitation laser source with respect to the plasmon frequency, Raman enhancement factors of a monolayer were found to be of several order of magnitude for both Langmuir-Blodgett and electron-beam lithography platforms. To further complement these results, gold wires arrays with large aspect ratio made by electron-beam lithography showed multipolar plasmon resonances with enhancement factors up to 105. In the second part of this thesis, near-field Raman microscopy has been developed with the aim to localize precisely the Raman enhancement and improve spatial resolution of Raman measurements. Atomic force microscopy gold tips have been used to locally enhance scattering signal of molecules in close proximity to the tip opening new opportunities. This approach known as TERS (Tip Enhanced Raman Spectroscopy) is of significant interest to probe nanomaterials, nanostructures or monolayers. Software and mechanical developments have been made between a confocal Raman microscope and an atomic force microscope to control simultaneously both instruments. This experimental setup was used to characterize gallium nitride semi-conductors nanowires with spatial resolution better than 200 nm

    Effets d'exaltations par des nanostructures métalliques (application à la microscopie Raman en Champ Proche)

    No full text
    Ces travaux de thÚse portent sur les phénomÚnes d amplification du signal de diffusion Raman par effet de surface et par effet de pointe. Des réseaux de motifs métalliques de taille nanométrique arrangés spatialement ont été fabriqués par la méthode de transfert Langmuir-Blodgett et par lithographie à faisceau d électrons. De telles structures de géométries contrÎlées déposées à la surface de lamelles de microscope ont été développées afin d amplifier le signal Raman de molécules adsorbées par effet SERS (Surface Enhanced Raman Spectroscopy). Ces nanostructures triangulaires en or de taille proche de la longueur d onde ont des bandes de résonance plasmon dans le domaine spectral visible. En utilisant une source de laser appropriée dans ce domaine spectral, les facteurs d amplification Raman d une couche mono-moléculaire d un dérivé azobenzÚne sont de plusieurs ordres de grandeur, et ce pour les deux techniques de nano-lithographie employées. Afin de compléter ces premiers résultats, des réseaux de fils d or avec de grands facteurs de forme ont été fabriqués. Ces derniers montrent des résonances plasmons multipolaires et des facteurs d amplification de l ordre de 105. Les techniques de microscopie en champ proche ont également été développées afin de localiser précisément l exaltation Raman et d accroitre la résolution spatiale de mesures Raman. Des pointes métalliques en or de taille nanométrique ont ainsi permis d amplifier localement le signal de diffusion de molécules placées à leur proximité par effet TERS (Tip Enhanced Raman Spectroscopy). Les développements logiciels et mécaniques entre un microscope confocal Raman et un microscope à force atomique ont été implémentés afin de contrÎler simultanément les deux instruments. Ce montage expérimental a été appliqué à l étude de nanofils semi-conducteurs de nitrure de gallium permettant de suivre leur signal vibrationnel avec une résolution spatiale inférieure à 200 nm.This thesis work focuses on Raman scattering enhancements by metallic nanostructures. In the first part of this work, arrays of metallic patterns with nanometer dimensions were fabricated by the Langmuir-Blodgett deposition technique and electron-beam lithography. Such structures made of gold were fabricated onto microscope slides with the goal to enhance the Raman signal through SERS effect (Surface Enhanced Raman Spectroscopy). These patterns formed by an assembly of triangular nanostructures with sizes of hundreds of nanometers, exhibit plasmon resonance bands in the visible spectral region. By using an appropriate excitation laser source with respect to the plasmon frequency, Raman enhancement factors of a monolayer were found to be of several order of magnitude for both Langmuir-Blodgett and electron-beam lithography platforms. To further complement these results, gold wires arrays with large aspect ratio made by electron-beam lithography showed multipolar plasmon resonances with enhancement factors up to 105. In the second part of this thesis, near-field Raman microscopy has been developed with the aim to localize precisely the Raman enhancement and improve spatial resolution of Raman measurements. Atomic force microscopy gold tips have been used to locally enhance scattering signal of molecules in close proximity to the tip opening new opportunities. This approach known as TERS (Tip Enhanced Raman Spectroscopy) is of significant interest to probe nanomaterials, nanostructures or monolayers. Software and mechanical developments have been made between a confocal Raman microscope and an atomic force microscope to control simultaneously both instruments. This experimental setup was used to characterize gallium nitride semi-conductors nanowires with spatial resolution better than 200 nm.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Fluorescence and second-harmonic generation correlative microscopy to probe space charge separation and silver cluster stabilization during direct laser writing in a tailored silver-containing glass

    No full text
    We report on fluorescence and second-harmonic generation correlative microscopy of femtosecond direct laser-induced structures in a tailored silver-containing phosphate glass. We compare the spatial distributions of the related permanent electric field and silver clusters. The latter appear to be co-localized where the associated electric potential ensures favorable reduction-oxidation conditions for their formation and stabilization. Space charge separation is shown to occur prior the cluster formation. The associated electric field is a key parameter for silver clustering, thanks to electric field assisted silver ion motion. Future photonic structures combining 3D laser-structured fluorescence and nonlinear optical properties in such tailored glass will require an optimal control of the induced electric field distribution.Femtosecond Laser Interaction and Nanostructurin

    Glass-ceramics for engineering optical properties and nonlinear optics for engineering glass ceramics

    No full text
    The investigation of nonlinear optical (NLO) properties is closely linked to the discovery of Lasers (Light Amplification by Stimulated Emission of Radiation) by Theodore Harold Maiman in 1960. The area of research has been devoted first naturally to non centrosymmetric crystals (LiNbO3, KDP, BBO, etc.). In 1961, Franken revealed for the first time on a quartz crystal the second harmonic generation [1037]. This discovery opened a new pathway for numerous innovative applications such as frequency conversion (second and third harmonic or sum and difference of frequency) starting from the interaction of monochromatic light sources and high fluence laser interaction with material. In the specific case of glasses, due to their isotropic nature, they do not provide second order nonlinearity such as a second harmonic signal, which forms the base of optical effect such as electro-optical effect (Pockels)

    Nanoparticle generation inside Ag-doped LBG glass by femtosecond laser irradiation

    No full text
    Precipitation of silver nanoparticles (Ag-NPs) can occur in a silver-doped lanthanum borogermanate glass matrix, either under thermal annealing or femtosecond direct laser writing (DLW). Macroscopic transmission and localized ”-fluorescence emission spectra provide typical plasmon resonance behavior of Ag-NPs. Annealing leads to the spatially random homogeneous creation of small NPs at low concentrations, while DLW shows higher and broader plasmon peaks, proving highly concentrated 3D localized structured NPs. DLW at high fluencies shows photo-induced dichroism, potentially giving access to 3D dichroic photonic responses.Initiative d'excellence de l'Université de Bordeau

    Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass

    No full text
    We depict a new approach for the localized creation in three dimensions (3D) of a highly demanded nonlinear optical function for integrated optics, namely second harmonic generation. We report on the nonlinear optical characteristics induced by single-beam femtosecond direct laser writing in a tailored silver-containing phosphate glass. The original spatial distribution of the nonlinear pattern, composed of four lines after one single laser writing translation, is observed and modeled with success, demonstrating the electric field induced origin of the second harmonic generation. These efficient second-order nonlinear structures...Femtosecond Laser Interaction and Nanostructurin
    corecore