146 research outputs found

    The Gut Microbiota and Their Metabolites in Human Arterial Stiffness

    Get PDF
    Aim: Gut microbiota-derived metabolites, such as short-chain fatty acids (SCFAs) have vasodilator properties in animal and human ex vivo arteries. However, the role of the gut microbiota and SCFAs in arterial stiffness in humans is still unclear. Here we aimed to determine associations between the gut microbiome, SCFA and their G-protein coupled sensing receptors (GPCRs) in relation to human arterial stiffness. / Methods: Ambulatory arterial stiffness index (AASI) was determined from ambulatory blood pressure (BP) monitoring in 69 participants from regional and metropolitan regions in Australia (55.1% women; mean, 59.8± SD, 7.26 years of age). The gut microbiome was determined by 16S rRNA sequencing, SCFA levels by gas chromatography, and GPCR expression in circulating immune cells by real-time PCR. / Results: There was no association between metrics of bacterial α and β diversity and AASI or AASI quartiles in men and women. We identified two main bacteria taxa that were associated with AASI quartiles: Lactobacillus spp. was only present in the lowest quartile, while Clostridium spp. was present in all quartiles but the lowest. AASI was positively associated with higher levels of plasma, but not faecal, butyrate. Finally, we identified that the expression of GPR43 (FFAR2) and GPR41 (FFAR3) in circulating immune cells were negatively associated with AASI. / Conclusions: Our results suggest that arterial stiffness is associated with lower levels of the metabolite-sensing receptors GPR41/GPR43 in humans, blunting its response to BP-lowering metabolites such as butyrate. The role of Lactobacillus spp. and Clostridium spp., as well as butyrate-sensing receptors GPR41/GPR43, in human arterial stiffness needs to be determined

    Essential Hypertension Is Associated With Changes in Gut Microbial Metabolic Pathways A Multisite Analysis of Ambulatory Blood Pressure

    Get PDF
    Recent evidence supports a role for the gut microbiota in hypertension, but whether ambulatory blood pressure is associated with gut microbiota and their metabolites remains unclear. We characterized the function of the gut microbiota, their metabolites and receptors in untreated human hypertensive participants in Australian metropolitan and regional areas. Ambulatory blood pressure, fecal microbiome predicted from 16S rRNA gene sequencing, plasma and fecal metabolites called short-chain fatty acid, and expression of their receptors were analyzed in 70 untreated and otherwise healthy participants from metropolitan and regional communities. Most normotensives were female (66%) compared with hypertensives (35%, P<0.01), but there was no difference in age between the groups (59.2±7.7 versus 60.3±6.6 years old). Based on machine learning multivariate covariance analyses of de-noised amplicon sequence variant prevalence data, we determined that there were no significant differences in predicted gut microbiome α- and β-diversity metrics between normotensives versus essential or masked hypertensives. However, select taxa were specific to these groups, notably Acidaminococcus spp., Eubacterium fissicatena, and Muribaculaceae were higher, while Ruminococcus and Eubacterium eligens were lower in hypertensives. Importantly, normotensive and essential hypertensive cohorts could be differentiated based on gut microbiome gene pathways and metabolites. Specifically, hypertensive participants exhibited higher plasma acetate and butyrate, but their immune cells expressed reduced levels of short-chain fatty acid-activated GPR43 (G-protein coupled receptor 43). In conclusion, gut microbial diversity did not change in essential hypertension, but we observed a significant shift in microbial gene pathways. Hypertensive subjects had lower levels of GPR43, putatively blunting their response to blood pressure-lowering metabolites

    May Measurement Month 2019: an analysis of blood pressure screening results from Australia.

    Get PDF
    May Measurement Month (MMM) is an annual global blood pressure (BP) screening campaign aimed at obtaining standardized BP measurements and other relevant health information from members of the community to increase awareness of elevated BP and the associated risks. Adults (≥18 years) were recruited through opportunistic sampling across the various Australian states during May 2019. Three BP readings were recorded in a standardized manner for each participant, and data on lifestyle factors and comorbidities were collected. Hypertension was defined as a systolic BP ≥140 mmHg, or a diastolic BP ≥90 mmHg (according to the MMM protocol) or taking antihypertensive medication. Multiple imputation was used to estimate participants' mean BP where three readings were not available. Of the 2877 participants, 901 (31.3%) had hypertension of whom 455 (50.5%) were aware of their condition, and 366 (40.6%) were on antihypertensive medication. Of those taking antihypertensive medication, 54.3% were controlled to <140/90 mmHg with the remaining 45.7% of participants inadequately treated. Approximately 74% of treated patients were on a single antihypertensive medication. The MMM campaign provides an important platform for standardized compilation of BP data and creation of BP awareness in Australia and other nations worldwide. Data from the 2019 MMM campaign highlight that BP control rates in Australia remain unacceptably low

    Microbial Interventions to Control and Reduce Blood Pressure in Australia (MICRoBIA): rationale and design of a double-blinded randomised cross-over placebo controlled trial

    Get PDF
    Background: Hypertension is a prevalent chronic disease worldwide that remains poorly controlled. Recent studies support the concept that the gut microbiota is involved in the development of hypertension and that dietary fibre intake may act through the gut microbiota to lower blood pressure (BP). Resistant starch is a type of prebiotic fibre which is metabolised by commensal bacteria in the colon to produce short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. Previous work in pre-clinical models provides strong evidence that both prebiotic fibre as well as SCFAs (i.e. postbiotics) can prevent the development of hypertension. The aim of this clinical trial is to determine if acetylated and butyrylated modified resistant starch can decrease BP of hypertensive individuals via the modulation of the gut microbiota and release of high levels of SCFAs.Methods: This is a phase IIa double-blinded, randomised, cross-over, placebo controlled trial. Participants are randomly allocated to receive either a diet containing 40 g/day of the modified resistant starch or placebo (corn starch or regular flour) for 3 weeks on each diet, with a 3-week washout period between the two diets. BP is measured in the office, at home, and using a 24-h ambulatory device. Arterial stiffness is measured using carotid-to-femoral pulse wave velocity. Our primary endpoint is a reduction in ambulatory daytime systolic BP. Secondary endpoints include changes to circulating cytokines, immune markers, and modulation to the gut microbiome.Discussion: The findings of this study will provide the first evidence for the use of a combination of pre- and postbiotics to lower BP in humans. The results are expected at the end of 2021

    Native American Children and Their Reports of Hope: Construct Validation of the Children's Hope Scale

    Get PDF
    Child reports of hope continue to be utilized as predictors of positive adjustment; however, the utilization of the hope construct has not been assessed within the culturally diverse Native American child group. The present study investigated the applicability of the Hope theory among 96 Native American children in the Midwest. Measures included the Children’s Hope Scale and a Hope Interview. Native American children in the current sample appear to conceptualize hope as a way to reach goals as did the children in the normative sample. Results from the factor analysis demonstrate that the factor structure found in the current study was similar to the factor structure found in the standardization sample. Because of the similar Hope theory conceptualization and factor structure, interventions focused on the positive psychology construct of hope may be applicable within a Native American child population

    Pulmonary Arterial Hypertension Affects the Rat Gut Microbiome

    Get PDF
    We have analysed whether pulmonary arterial hypertension (PAH) alters the rat faecal microbiota. Wistar rats were injected with the VEGF receptor antagonist SU5416 (20 mg/kg s.c.) and followed for 2 weeks kept in hypoxia (10% O2, PAH) or injected with vehicle and kept in normoxia (controls). Faecal samples were obtained and microbiome composition was determined by 16S rRNA gene sequencing and bioinformatic analysis. No effect of PAH on the global microbiome was found (α- or β-diversity). However, PAH-exposed rats showed gut dysbiosis as indicated by a taxonomy-based analysis. Specifically, PAH rats had a three-fold increase in Firmicutes-to-Bacteroidetes ratio. Within the Firmicutes phylum, there were no large changes in the relative abundance of the bacterial families in PAH. Among Bacteroidetes, all families were less abundant in PAH. A clear separation was observed between the control and PAH clusters based on short chain fatty acid producing bacterial genera. Moreover, acetate was reduced in the serum of PAH rats. In conclusion, faecal microbiota composition is altered as a result of PAH. This misbalanced bacterial ecosystem might in turn play a pathophysiological role in PAH by altering the immunologic, hormonal and metabolic homeostasis.This study is supported by grants from Mineco (SAF2014-55399-R, SAF2014-55523-R, SAF2016-77222 and SAF2017-84494-C2-1R), Instituto de Salud Carlos III (PI15/01100), with funds from the European Union (Fondo Europeo de Desarrollo Regional FEDER). M.C., G.M-P. and S.E-R. are funded by Universidad Complutense, Fondo de Garantía Juvenil (Comunidad de Madrid) and Ciberes grant with funds from Fundación Contra la Hipertensión Pulmonar, a FPU grant from Ministerio de Educación, respectively. J.L.I.G is a CNIC IPP COFUND Fellow and has received funding from the People Programme (Marie Curie Actions) of the FP7/2007-2013 under REA grant agreement n° 600396. The CNIC is supported by MEIC-AEI and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505)

    Genes Influencing Circadian Differences in Blood Pressure in Hypertensive Mice

    Get PDF
    Essential hypertension is a common multifactorial heritable condition in which increased sympathetic outflow from the central nervous system is involved in the elevation in blood pressure (BP), as well as the exaggerated morning surge in BP that is a risk factor for myocardial infarction and stroke in hypertensive patients. The Schlager BPH/2J mouse is a genetic model of hypertension in which increased sympathetic outflow from the hypothalamus has an important etiological role in the elevation of BP. Schlager hypertensive mice exhibit a large variation in BP between the active and inactive periods of the day, and also show a morning surge in BP. To investigate the genes responsible for the circadian variation in BP in hypertension, hypothalamic tissue was collected from BPH/2J and normotensive BPN/3J mice at the ‘peak’ (n = 12) and ‘trough’ (n = 6) of diurnal BP. Using Affymetrix GeneChip® Mouse Gene 1.0 ST Arrays, validation by quantitative real-time PCR and a statistical method that adjusted for clock genes, we identified 212 hypothalamic genes whose expression differed between ‘peak’ and ‘trough’ BP in the hypertensive strain. These included genes with known roles in BP regulation, such as vasopressin, oxytocin and thyrotropin releasing hormone, as well as genes not recognized previously as regulators of BP, including chemokine (C-C motif) ligand 19, hypocretin and zinc finger and BTB domain containing 16. Gene ontology analysis showed an enrichment of terms for inflammatory response, mitochondrial proton-transporting ATP synthase complex, structural constituent of ribosome, amongst others. In conclusion, we have identified genes whose expression differs between the peak and trough of 24-hour circadian BP in BPH/2J mice, pointing to mechanisms responsible for diurnal variation in BP. The findings may assist in the elucidation of the mechanism for the morning surge in BP in essential hypertension

    Resveratrol Inhibits Inflammatory Responses via the Mammalian Target of Rapamycin Signaling Pathway in Cultured LPS-Stimulated Microglial Cells

    Get PDF
    Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells.BV-2 cells were treated with resveratrol (25, 50, and 100 µM) and/or LPS (1 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK).This study indicates that resveratrol inhibited LPS-induced proinflammatory enzymes and proinflammatory cytokines via down-regulation phosphorylation of NF-κB, CREB and MAPKs family in a mTOR-dependent manner. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of resveratrol

    Carcass persistence and detectability : reducing the uncertainty surrounding wildlife-vehicle collision surveys

    Get PDF
    Carcass persistence time and detectability are two main sources of uncertainty on roadkill surveys. In this study, we evaluate the influence of these uncertainties on roadkill surveys and estimates. To estimate carcass persistence time, three observers (including the driver) surveyed 114km by car on a monthly basis for two years, searching for wildlife-vehicle collisions (WVC). Each survey consisted of five consecutive days. To estimate carcass detectability, we randomly selected stretches of 500m to be also surveyed on foot by two other observers (total 292 walked stretches, 146 km walked). We expected that body size of the carcass, road type, presence of scavengers and weather conditions to be the main drivers influencing the carcass persistence times, but their relative importance was unknown. We also expected detectability to be highly dependent on body size. Overall, we recorded low median persistence times (one day) and low detectability (<10%) for all vertebrates. The results indicate that body size and landscape cover (as a surrogate of scavengers' presence) are the major drivers of carcass persistence. Detectability was lower for animals with body mass less than 100g when compared to carcass with higher body mass. We estimated that our recorded mortality rates underestimated actual values of mortality by 2±10 fold. Although persistence times were similar to previous studies, the detectability rates here described are very different from previous studies. The results suggest that detectability is the main source of bias across WVC studies. Therefore, more than persistence times, studies should carefully account for differing detectability when comparing WVC studies
    • …
    corecore