2,181 research outputs found

    Optomechanical position detection enhanced by de-amplification using intracavity squeezing

    Full text link
    It has been predicted and experimentally demonstrated that by injecting squeezed light into an optomechanical device it is possible to enhance the precision of a position measurement. Here, we present a fundamentally different approach where the squeezing is created directly inside the cavity by a nonlinear medium. Counterintuitively, the enhancement of the signal to noise ratio works by de-amplifying precisely the quadrature that is sensitive to the mechanical motion without losing quantum information. This enhancement works for systems with a weak optomechanical coupling and/or strong mechanical damping. This could allow for larger mechanical bandwidth of quantum limited detectors based on optomechanical devices. Our approach can be straightforwardly extended to Quantum Non Demolition (QND) qubit detection.Comment: references added, slight change

    Correlation induced resonances in transport through coupled quantum dots

    Full text link
    We investigate the effect of local electron correlations on transport through parallel quantum dots. The linear conductance as a function of gate voltage is strongly affected by the interplay of the interaction U and quantum interference. We find a pair of novel correlation induced resonances separated by an energy scale that depends exponentially on U. The effect is robust against a small detuning of the dot energy levels and occurs for arbitrary generic tunnel couplings. It should be observable in experiments on the basis of presently existing double-dot setups.Comment: 4+ pages, 5 figures included, version accepted for publication in PR

    Topological Phases of Sound and Light

    Get PDF
    Topological states of matter are particularly robust, since they exploit global features insensitive to local perturbations. In this work, we describe how to create a Chern insulator of phonons in the solid state. The proposed implementation is based on a simple setting, a dielectric slab with a suitable pattern of holes. Its topological properties can be wholly tuned in-situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport along the edges can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases. This would be an example of a Chern insulator produced from the interaction between two physically very different particle species, photons and phonons

    Antiphosphatidylserine antibody as a cause of multiple dural venous sinus thromboses and ST-elevation myocardial infarction

    Get PDF
    Objective: Rare disease Background: Antiphospholipid syndrome (APS) is an autoimmune disease characterized by antibodies directed against phos-pholipids on plasma membranes. Through unclear mechanisms, APS confers hypercoagulability. APS may cause recurrent thromboses in the arterial and venous vasculature. We report a case of primary APS resulting in cerebral venous thrombosis and ST-elevation myocardial infarction (STEMI) for which only antiphosphatidylserine (aPS) IgM antibody was positive after extensive investigation. Case Report: A 48-year-old male was admitted after a witnessed generalized seizure with subsequent confusion. Imaging demonstrated thrombosis of multiple central nervous system (CNS) sinuses, including the superior sagittal sinus and bilateral transverse sinuses. The patient was heparinized with aggressive hydration, which proved inadequate, prompting endovascular thrombectomy. Three months later, despite anticoagulation therapy, the patient developed a STEMI when International Normalized Ratio (INR) was 1.8. Echocardiogram (ECHO) and PAN CT scan were normal. Initial coagulation studies demonstrated normal anticardiolipin antibody, prothrombin time, partial thromboplastin time, and platelet count. Outpatient coagulation studies revealed normal an-tithrombin III, protein C/S, hemoglobin electrophoresis, homocysteine, anti-b2 glycoprotein 1 antibodies, and D-Dimer. Factor V Leiden, JAK 2 mutation, prothrombin gene mutation, and tests for paroxysmal nocturnal he-moglobinuria (PNH) were negative. A positive phosphatidylserine IgM was detected. The patient was continued on warfarin (10 mg daily) with a target INR of 3.0–3.5 and clopidogrel (75 mg daily). Conclusions: Despite extensive investigation, this patient only showed evidence of elevated aPS IgM antibodies, likely contributing to his CNS venous sinus thromboses and STEMI. It is important to screen for antiphosphatidylserine antibodies in cases of unprovoked thrombosis when standard thrombophilia analysis is unrevealing. This will assist in identifying pathogenicity and help prevent recurrence of subsequent thromboses. © Am J Case Rep, 2018

    Optomechanical creation of magnetic fields for photons on a lattice

    Get PDF
    We propose using the optomechanical interaction to create artificial magnetic fields for photons on a lattice. The ingredients required are an optomechanical crystal, i.e. a piece of dielectric with the right pattern of holes, and two laser beams with the right pattern of phases. One of the two proposed schemes is based on optomechanical modulation of the links between optical modes, while the other is an lattice extension of optomechanical wavelength-conversion setups. We illustrate the resulting optical spectrum, photon transport in the presence of an artificial Lorentz force, edge states, and the photonic Aharonov-Bohm effect. Moreover, wWe also briefly describe the gauge fields acting on the synthetic dimension related to the phonon/photon degree of freedom. These can be generated using a single laser beam impinging on an optomechanical array

    Quantum Signatures of the Optomechanical Instability

    Get PDF
    In the past few years, coupling strengths between light and mechanical motion in optomechanical setups have improved by orders of magnitude. Here we show that, in the standard setup under continuous laser illumination, the steady state of the mechanical oscillator can develop a non-classical, strongly negative Wigner density if the optomechanical coupling is large at the single-photon level. Because of its robustness, such a Wigner density can be mapped using optical homodyne tomography. These features are observed near the onset of the instability towards self-induced oscillations. We show that there are also distinct signatures in the photon-photon correlation function g(2)(t)g^{(2)}(t) in that regime, including oscillations decaying on a time scale not only much longer than the optical cavity decay time, but even longer than the \emph{mechanical} decay time.Comment: 6 pages including 1 appendix. 6 Figures. Correcte

    The Standard Quantum Limit of Coherent Beam Combining

    Full text link
    Coherent beam combining refers to the process of generating a bright output beam by merging independent input beams with locked relative phases. We report the first quantum mechanical noise limit calculations for coherent beam combining and compare our results to quantum-limited amplification. Our coherent beam combining scheme is based on an optical Fourier transformation which renders the scheme compatible with integrated optics. The scheme can be layed out for an arbitrary number of input beams and approaches the shot noise limit for a large number of inputs

    Fermionic Mach-Zehnder interferometer subject to a quantum bath

    Full text link
    We study fermions in a Mach-Zehnder interferometer, subject to a quantum-mechanical environment leading to inelastic scattering, decoherence, renormalization effects, and time-dependent conductance fluctuations. Both the loss of interference contrast as well as the shot noise are calculated, using equations of motion and leading order perturbation theory. The full dependence of the shot-noise correction on setup parameters, voltage, temperature and the bath spectrum is presented. We find an interesting contribution due to correlations between the fluctuating renormalized phase shift and the output current, discuss the limiting behaviours at low and high voltages, and compare with simpler models of dephasing.Comment: 5 pages, 3 figure

    Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings: From Diffusive through Ergodic to 0D Behavior

    Full text link
    We analyze dephasing by electron interactions in a small disordered quasi-one dimensional (1D) ring weakly coupled to leads, where we recently predicted a crossover for the dephasing time \tPh(T) from diffusive or ergodic 1D (\tPh^{-1} \propto T^{2/3}, T^{1}) to 0D0D behavior (\tPh^{-1} \propto T^{2}) as TT drops below the Thouless energy \ETh. We provide a detailed derivation of our results, based on an influence functional for quantum Nyquist noise, and calculate all leading and subleading terms of the dephasing time in the three regimes. Explicitly taking into account the Pauli blocking of the Fermi sea in the metal allows us to describe the 0D0D regime on equal footing as the others. The crossover to 0D0D, predicted by Sivan, Imry and Aronov for 3D systems, has so far eluded experimental observation. We will show that for T \ll \ETh, 0D0D dephasing governs not only the TT-dependence for the smooth part of the magnetoconductivity but also for the amplitude of the Altshuler-Aronov-Spivak oscillations, which result only from electron paths winding around the ring. This observation can be exploited to filter out and eliminate contributions to dephasing from trajectories which do not wind around the ring, which may tend to mask the T2T^{2} behavior. Thus, the ring geometry holds promise of finally observing the crossover to 0D0D experimentally.Comment: in "Perspectives of Mesoscopic Physics - Dedicated to Yoseph Imry's 70th Birthday", edited by Amnon Aharony and Ora Entin-Wohlman (World Scientific, 2010), chap. 20, p. 371-396, ISBN-13 978-981-4299-43-

    Self-learning Machines based on Hamiltonian Echo Backpropagation

    Get PDF
    A physical self-learning machine can be defined as a nonlinear dynamical system that can be trained on data (similar to artificial neural networks), but where the update of the internal degrees of freedom that serve as learnable parameters happens autonomously. In this way, neither external processing and feedback nor knowledge of (and control of) these internal degrees of freedom is required. We introduce a general scheme for self-learning in any time-reversible Hamiltonian system. We illustrate the training of such a self-learning machine numerically for the case of coupled nonlinear wave fields
    • …
    corecore