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1. DERIVATION OF THE EFFECTIVE MAGNETIC HAMIL-
TONIAN FOR THE MODULATED LINK SCHEME

Here, we derive the effective Hamiltonian h̄Jeffeiφ â†
BâA + h.c.

that describes the tunneling of photons from site A to site B
in the presence of an effective magnetic field created using the
modulated link scheme. We start from the full time dependent
Hamiltonian for the modulated link scheme (as displayed in
the main text). Since this second-quantized Hamiltonian is par-
ticle conserving we can switch to a first-quantized picture in the
standard way. The corresponding single-particle Hamiltonian
ĤM reads

ĤM = h̄

⎛
⎜⎜⎜⎝

ωA 0 −J

0 ωB −J

−J −J ω̄I + 2g0|β| cos(Ωt + φ)

⎞
⎟⎟⎟⎠ .

It acts on the photon wavefunction |ψ〉 ≡ (ψA, ψB, ψI) where
ψs describes the probability amplitude that the photon is
localized on site s, s = A, B, I. Since the Hamiltonian
is time periodic, there is a complete set of quasi-periodic
solutions of the Schrödinger equation, |ψj(t + 2π/Ω)〉 = 
exp[−i2πωj/Ω]|ψj(t)〉 where 2π/Ω is the period and index j 
spans the Hilbert space, j = 1, 2, 3. In practice, one solves
the eigenvalue problem ε jm

∣∣φjm〉〉 = Hjm
∣∣φjm〉〉 where H ≡

−ih̄∂t + ĤM is the Floquet-Hamiltonian, ε jm = h̄(ωj + mΩ)

are the quasienergies and
∣∣φjm〉〉 = exp[i(ωj + mΩ)t]

∣∣ψj(t)〉 are
time-periodic states, the so-called Floquet eigenstates [m ∈ Z]
[1]. Notice that the Floquet Hamiltonian can be regarded as an
operator on the extended Hilbert space of the time periodic vec-

tors equipped with the scalar product

〈〈φj
∣∣φm〉〉 = 1

T

∫ T

0
〈φj(t)|φm(t)〉. (S1)

In this framework, we can use the standard quantum me-
chanical perturbation theory to derive an effective time in-
dependent single-particle Hamiltonian. We assume a res-
onant drive ωA ≈ ωB + Ω, and weak tunneling/driving,
JA,B/|ωA,B − ω̄I |, g0β/Ω � 1. We identify resonant Floquet-
levels with quasienergies h̄ωA and h̄(ωB + Ω) coupled via the
third order virtual tunneling process through the interface site
I. Up to leading order in perturbation theory, we can focus on
the block of the Floquet Hamiltonian comprising the four un-
perturbed quasienergy levels that are involved in this process,

Ĥ = h̄

⎛
⎜⎜⎜⎜⎜⎜⎝

ωA 0 −J 0

0 ωB + Ω 0 −J

−J 0 ωI g0β

0 −J g0β∗ ωI + Ω

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Application of a standard Schrieffer-Wolff transformation [2–
4], i.e. applying degenerate perturbation theory to third order,
leads to the effective block diagonal Floquet Hamiltonian

Ĥeff = h̄

⎛
⎝ ω̃A Jeffe−iφ

Jeffeiφ ω̃B + ωex

⎞
⎠ . (S2)

where ω̃s = ωs + J2
s /(ωs − ω̄I) with s = A, B and Jeff =

g0|β|JA JB/[(ωA − ω̄I)(ωB − ω̄I)]. Finally, we turn back Hamil-
tonian S2 into its second-quantized form and switch to a frame

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216209419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1364/optica.2.000635.s001
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-2-7-635


rotating with frequency ω̃A (ω̃B) on site A (B). For a resonant
drive, ω̃A = ω̃B + Ω, this yields the desired form of the second-
quantized effective Hamiltonian, Jeff(e−iφ â†

AâB + eiφ â†
BâA).

2. TRANSMISSION AMPLITUDES AND DENSITY OF
STATES FOR THE MODULATED LINK SCHEME

Here, we calculate the LDOS for the modulated link scheme
which is plotted in Figure 2 of the main text. We use the full
time dependent Hamiltonian for the modulated link scheme
(displayed in the main text), extended to the whole lattice (in-
cluding also the sublattice formed by the link sites). Since we
are dealing with a time periodic system where the energy is not
a constant of motion, we have to appropriately generalize the
definition of the LDOS. A natural generalization of the standard
definition to time-periodic systems is the following,

ρ(ω, j) = −2ImG(ω, 0; j, j)

where G(ω, m; j, l) is the Floquet Green’s function

G =
−i
T

∫ T

0
dτ

∫ ∞

0
dtei(ω+mΩ)t+imΩτ〈[âj(t + τ), â†

l (τ)]〉.

The Floquet Green’s function describes the (linear) response of
the array to a probe laser. More precisely, the light amplitude on
site j in the presence of a probe drive on site l with frequency ω

and amplitude α(in) [described by the additional Hamiltonian
term HI = ih̄

√
κα(in)(â†

l e−iωt + h.c.)] is

〈âj(t)〉 = ∑
m

e−i(ω+mΩ)ti
√

κα(in)G(ω, m; j, l).

This is essentially a generalization of the Kubo formula which
applies to any time periodic Hamiltonian. Using the input-

output relations, â(out)
j (t) = â(in)j (t) − √

κâj, we can also cal-
culate the field outside the cavity,

〈â(out)
j (t)〉 ≡ ∑

m
e−i(ω+mΩ)ttO(ω, m; j, l)α(in),

where
tO(ω, m; j, l) = δjlδm0 − iκG(ω, m; j, l)

is the transmission amplitude of a photon from site l to site j if it
has been up-converted m-times (or down-converted |m|-times
for m negative).

For a time-periodic system with a particle conserving Hamil-
tonian, the Floquet Green’s function can be easily expressed in
terms of the first-quantized Floquet Hamiltonian H = −i∂t −
H(t),

G(ω, m; j, l) =
〈〈

j, m
∣∣ (ω −H+ iκ/2)−1 ∣∣l, 0

〉〉

Notice that the Floquet Hamiltonian and the Green’s function
can be regarded as operators acting on the extended Hilbert
space of the time-periodic photon states with the scalar product
Eq. (S1 ). As such they acts on the time periodic states |j, m〉〉,
where index j indicates the lattice site and m the Fourier com-
ponent. Thus, the density of states can be readily computed by
diagonalizing the Floquet Green’s function. We find

ρ(ω) = ∑
k

κ

(ω − ωk)2 + κ2/4

∣∣∣〈〈j, 0
∣∣φk

〉〉∣∣∣
2

,

where h̄ωk are the quasienergies and
∣∣φk〉〉 are the correspond-

ing Floquet eigenstates obtained by numerically diagonalizing

H. Taking into account that the Floquet eigenfunctions
∣∣φk〉〉

forms a complete orthonormal basis of the Hilbert space of the
time-periodic states [with the scalar product Eq. (S1 )], it imme-
diately follows that the density of states is appropriately nor-
malized, ∫ ∞

−∞
dωρ(ω) = 2π.

3. TRANSMISSION AMPLITUDES FOR THE
FREQUENCY-CONVERSION SCHEME

For the frequency-conversion scheme we start from the lin-
earized Langevin equations for the full array including the me-
chanical links modes [5, 6],

˙̂bk = ih̄−1[Ĥ, b̂k]− Γb̂k/2 +
√

Γb̂(in)k ,

˙̂aj = ih̄−1[Ĥ, âj]− κâj/2 +
√

κâ(in)j . (S3)

The first line (second line) describes the sites hosting a me-
chanical (optical) mode. The Hamiltonian Ĥ is given by the
Hamiltonian for the wavelength conversion scheme (as dis-
played in the main text), extended to the full array, and the
noise forces have the usual commutation relations [5]. Notice
that Eq. (S3) is written in a frame where the optical modes on
sublattice A and B are rotating with frequency ωL1 and ωL2, re-
spectively. A probe laser on site l with frequency ω and am-
plitude αin is described by the additional Hamiltonian term
HI = ih̄

√
κα(in)(â†

l e−iΔpt − h.c.), where Δp = ω − ωLs (s = 1, 2
for l on sublattice A or B, respectively). The linear response of
the light amplitude on site j to such probe laser is given by the
Kubo formula

〈âj(t)〉 = i
√

κα(in)e−iΔptGââ† (Δp, j, l)

−i
√

κα(in)eiΔptGââ(−Δp, j, l), (S4)

with the Green’s functions

Gââ† (ω, j, l) = −i
∫ ∞

0
dteiωt〈[âj(t), â†

l (0)]〉,

Gââ(ω, j, l) = −i
∫ ∞

0
dteiωt〈[âj(t), âl(0)]〉.

Notice that in Figure 3 and 4 of the main text we plot the reso-
nant part of the response corresponding to the first line of Eq.
(S4). If j and l lie on different sublattices, the frequency of the
probe signal is converted [to read off this frequency from Eq.
(S4), one has to keep in mind that the frame of reference is ro-
tating at different frequencies on the two optical sublattices]. Fi-
nally, we note that the light transmitted outside of the sample〈

â(out)
j

〉
= t(ω, j, l)

〈
â(in)l

〉
can be readily computed using the

input output relations [7] â(out)
j = â(in)j −√

κâj. From Eq. (S4)
we find the transmission amplitude

tO(ω, l, j) = δlj − iκGââ† (ω, l, j). (S5)

Since the transmission amplitudes of a probe laser beam are gen-
erally proportional to the corresponding light amplitudes inside
the array (on all sites except for the one where the light is in-
jected), the amplitude patterns shown in Figures 3 and 4 could
be directly measured by a position resolved measurement of the
light scattered by the array.

In order to calculate the transmission in Figures 3 and 4
we have calculated the Green’s function numerically. We note

2



that for an array with N × N optical sites, there is a total
of N(2N − 1) sites (including also the mechanical sites) and
a total of 2N(2N − 1) degrees of freedom. Thus, comput-
ing numerically the Green’s function amounts to inverting a
2N(2N − 1)× 2N(2N − 1) matrix. In Figure 3 and 4 we have
chosen N = 22.
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