607 research outputs found

    A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community

    Get PDF
    Abstract Microbial biofilms are omnipresent in nature and relevant to a broad spectrum of industries ranging from bioremediation and food production to biomedical applications. To date little is understood about how multi-species biofilm communities develop and function on a molecular level, due to the complexity of these biological systems. Here we apply a meta-proteomics approach to investigate the mechanisms influencing biofilm formation in a model consortium of four bacterial soil isolates; Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus. Protein abundances in community and single species biofilms were compared to describe occurring inter-species interactions and the resulting changes in active metabolic pathways. To obtain full taxonomic resolution between closely related species and empower correct protein quantification, we developed a novel pipeline for generating reduced reference proteomes for spectral database searches. Meta-proteomics profiling indicated that community development is dependent on cooperative interactions between community members facilitating cross-feeding on specific amino acids. Opposite regulation patterns of fermentation and nitrogen pathways in Paenibacillus amylolyticus and Xanthomonas retroflexus may, however, indicate that competition for limited resources also affects community development. Overall our results demonstrate the multitude of pathways involved in biofilm formation in mixed communities

    Method for identification of tissue or organ localization of a tumour

    Get PDF
    The invention relates to a method for predicting the localization of a primary tumour, wherein said method comprises the use of genomic profile data, and wherein the method is capable of predicting the type of cancer by a classification score ranking among a variety of the possible tumour types.</p

    Quantification of within-sample genetic heterogeneity from SNP-array data

    Get PDF
    Intra-tumour genetic heterogeneity (ITH) fosters drug resistance and is a critical hurdle to clinical treatment. ITH can be well-measured using multi-region sampling but this is costly and challenging to implement. There is therefore a need for tools to estimate ITH in individual samples, using standard genomic data such as SNP-arrays, that could be implemented routinely. We designed two novel scores S and R, respectively based on the Shannon diversity index and Ripley’s L statistic of spatial homogeneity, to quantify ITH in single SNP-array samples. We created in-silico and in-vitro mixtures of tumour clones, in which diversity was known for benchmarking purposes. We found significant but highly-variable associations of our scores with diversity in-silico (p < 0.001) and moderate associations in–vitro (p = 0.015 and p = 0.085). Our scores were also correlated to previous ITH estimates from sequencing data but heterogeneity in the fraction of tumour cells present across samples hampered accurate quantification. The prognostic potential of both scores was moderate but significantly predictive of survival in several tumour types (corrected p = 0.03). Our work thus shows how individual SNP-arrays reveal intra-sample clonal diversity with moderate accuracy

    Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests novel indications for existing cancer drugs

    Get PDF
    Background: Ovarian and triple-negative breast cancers with BRCA1 or BRCA2 loss are highly sensitive to treatment with PARP inhibitors and platinum-based cytotoxic agents and show an accumulation of genomic scars in the form of gross DNA copy number aberrations. Cancers without BRCA1 or BRCA2 loss but with accumulation of similar genomic scars also show increased sensitivity to platinum-based chemotherapy. Therefore, reliable biomarkers to identify DNA repair-deficient cancers prior to treatment may be useful for directing patients to platinum chemotherapy and possibly PARP inhibitors. Recently, three SNP array-based signatures of chromosomal instability were published that each quantitate a distinct type of genomic scar considered likely to be caused by improper DNA repair. They measure telomeric allelic imbalance (named NtAI), large scale transition (named LST), and loss of heterozygosity (named HRD-LOH), and it is suggested that these signatures may act as biomarkers for the state of DNA repair deficiency in a given cancer. Results: We explored the pan-cancer distribution of scores of the three signatures utilizing a panel of 5371 tumors representing 15 cancer types from The Cancer Genome Atlas, and found a good correlation between scores of the three signatures (Spearman’s ρ 0.73–0.87). In addition we found that cancer types ordinarily receiving platinum as standard of care have higher median scores of all three signatures. Interestingly, we also found that smaller subpopulations of high-scoring tumors exist in most cancer types, including those for which platinum chemotherapy is not standard therapy. Conclusions: Within several cancer types that are not ordinarily treated with platinum chemotherapy, we identified tumors with high levels of the three genomic biomarkers. These tumors represent identifiable subtypes of patients which may be strong candidates for clinical trials with PARP inhibitors or platinum-based chemotherapeutic regimens. Electronic supplementary material The online version of this article (doi:10.1186/s40364-015-0033-4) contains supplementary material, which is available to authorized users

    Action needed for the EU Common Agricultural Policy to address sustainability challenges

    Get PDF
    Abstract Making agriculture sustainable is a global challenge. In the European Union (EU), the Common Agricultural Policy (CAP) is failing with respect to biodiversity, climate, soil, land degradation as well as socio-economic challenges. The European Commission's proposal for a CAP post-2020 provides a scope for enhanced sustainability. However, it also allows Member States to choose low-ambition implementation pathways. It therefore remains essential to address citizens' demands for sustainable agriculture and rectify systemic weaknesses in the CAP, using the full breadth of available scientific evidence and knowledge. Concerned about current attempts to dilute the environmental ambition of the future CAP, and the lack of concrete proposals for improving the CAP in the draft of the European Green Deal, we call on the European Parliament, Council and Commission to adopt 10 urgent action points for delivering sustainable food production, biodiversity conservation and climate mitigation. Knowledge is available to help moving towards evidence-based, sustainable European agriculture that can benefit people, nature and their joint futures. The statements made in this article have the broad support of the scientific community, as expressed by above 3,600 signatories to the preprint version of this manuscript. The list can be found here (https://doi.org/10.5281/zenodo.3685632). A free Plain Language Summary can be found within the Supporting Information of this article.Peer reviewe

    Antibodies to MOG and AQP4 in children with neuromyelitis optica and limited forms of the disease

    Get PDF
    Objective To determine the frequency and clinical-radiological associations of antibodies to myelin oligodendrocyte glycoprotein (MOG) and aquaporin-4 (AQP4) in children presenting with neuromyelitis optica (NMO) and limited forms. Methods Children with a first event of NMO, recurrent (RON), bilateral ON (BON), longitudinally extensive transverse myelitis (LETM) or brainstem syndrome (BS) with a clinical follow-up of more than 12 months were enrolled. Serum samples were tested for MOG-and AQP4-antibodies using live cell-based assays. Results 45 children with NMO (n=12), LETM (n=14), BON (n=6), RON (n=12) and BS (n=1) were included. 25/45 (56%) children had MOG-antibodies at initial presentation (7 NMO, 4 BON, 8 ON, 6 LETM). 5/45 (11%) children showed AQP4-antibodies (3 NMO, 1 LETM, 1 BS) and 15/45 (33%) were seronegative for both antibodies (2 NMO, 2 BON, 4 RON, 7 LETM). No differences were found in the age at presentation, sex ratio, frequency of oligoclonal bands or median EDSS at last follow-up between the three groups. Children with MOG-antibodies more frequently (1) had a monophasic course (p=0.018) after one year, (2) presented with simultaneous ON and LETM (p=0.004) and (3) were less likely to receive immunosuppressive therapies (p=0.0002). MRI in MOG-antibody positive patients (4) less frequently demonstrated periependymal lesions (p=0.001), (5) more often were unspecific (p=0.004) and (6) resolved more frequently (p=0.016). Conclusions 67% of all children presenting with NMO or limited forms tested positive for MOG-or AQP4-antibodies. MOG-antibody positivity was associated with distinct features. We therefore recommend to measure both antibodies in children with demyelinating syndromes

    Prognostic relevance of MOG antibodies in children with an acquired demyelinating syndrome

    Get PDF
    Objective: To assess the prognostic value of MOG antibodies (abs) in the differential diagnosis of acquired demyelinating syndromes (ADS). Methods: Clinical course, MRI, MOG-abs, AQP4-abs, and CSF cells and oligoclonal bands (OCB) in children with ADS and 24 months of follow-up were reviewed in this observational prospective multicenter hospital-based study. Results: Two hundred ten children with ADS were included and diagnosed with acute disseminated encephalomyelitis (ADEM) (n = 60), neuromyelitis optica spectrum disorder (NMOSD) (n = 12), clinically isolated syndrome (CIS) (n = 101), and multiple sclerosis (MS) (n = 37) after the first episode. MOG-abs were predominantly found in ADEM (57%) and less frequently in NMOSD (25%), CIS (25%), or MS (8%). Increased MOG-ab titers were associated with younger age (p = 0.0001), diagnosis of ADEM (p = 0.005), increased CSF cell counts (p = 0.011), and negative OCB (p = 0.012). At 24-month follow-up, 96 children had no further relapses. Thirtyfive children developed recurrent non-MS episodes (63% MOG-, 17% AQP4-abs at onset). Seventy-nine children developed MS (4% MOG-abs at onset). Recurrent non-MS episodes were associated with high MOG-ab titers (p = 0.0003) and older age at onset (p = 0.024). MS was predicted by MS-like MRI (p = 1:1,280 predicted a non-MS course with a sensitivity of 47% and a specificity of 100% and a recurrent non-MS course with a sensitivity of 46% and a specificity of 86%. Conclusions: Our results show that the presence of MOG-abs strongly depends on the age at disease onset and that high MOG-ab titers were associated with a recurrent non-MS disease course

    CD8+ T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens

    Get PDF
    Autoreactive T cells are suspected to destroy hypocretin-producing neurons in narcolepsy. Here the authors detect CD8 T cells recognizing narcolepsy-related proteins in healthy individuals and in patients with narcolepsy, and show that the frequency of self-reactive CD8 T cells differs between patients and controls sharing the same HLA-II risk allele

    TumorTracer: a method to identify the tissue of origin from the somatic mutations of a tumor specimen

    Get PDF
    International audienceBACKGROUND:A substantial proportion of cancer cases present with a metastatic tumor and require further testing to determine the primary site; many of these are never fully diagnosed and remain cancer of unknown primary origin (CUP). It has been previously demonstrated that the somatic point mutations detected in a tumor can be used to identify its site of origin with limited accuracy. We hypothesized that higher accuracy could be achieved by a classification algorithm based on the following feature sets: 1) the number of nonsynonymous point mutations in a set of 232 specific cancer-associated genes, 2) frequencies of the 96 classes of single-nucleotide substitution determined by the flanking bases, and 3) copy number profiles, if available.METHODS:We used publicly available somatic mutation data from the COSMIC database to train random forest classifiers to distinguish among those tissues of origin for which sufficient data was available. We selected feature sets using cross-validation and then derived two final classifiers (with or without copy number profiles) using 80 % of the available tumors. We evaluated the accuracy using the remaining 20 %. For further validation, we assessed accuracy of the without-copy-number classifier on three independent data sets: 1669 newly available public tumors of various types, a cohort of 91 breast metastases, and a set of 24 specimens from 9 lung cancer patients subjected to multiregion sequencing.RESULTS:The cross-validation accuracy was highest when all three types of information were used. On the left-out COSMIC data not used for training, we achieved a classification accuracy of 85 % across 6 primary sites (with copy numbers), and 69 % across 10 primary sites (without copy numbers). Importantly, a derived confidence score could distinguish tumors that could be identified with 95 % accuracy (32 %/75 % of tumors with/without copy numbers) from those that were less certain. Accuracy in the independent data sets was 46 %, 53 % and 89 % respectively, similar to the accuracy expected from the training data.CONCLUSIONS:Identification of primary site from point mutation and/or copy number data may be accurate enough to aid clinical diagnosis of cancers of unknown primary origin
    • 

    corecore