466 research outputs found

    A Method for Combining Isolates of Phytophthora sojae to Screen for Novel Sources of Resistance to Phytophthora Stem and Root Rot in Soybean

    Get PDF
    Soybean cultivars with specific single resistance genes (Rps) are grown to reduce yield loss due to Phytophthora stem and root rot caused by the oomycete pathogen Phytophthora sojae. To identify novel Rps loci, soybean lines are often screened several times, each time with an isolate of P. sojae that differs in virulence on various Rps genes. The goal of this study was to determine whether several isolates of P. sojae that differ in virulence on Rpsgenes could be combined into a single source of inoculum and used to screen soybean lines for novel Rps genes. A set of 14 soybean differential lines, each carrying a specific Rps gene, was inoculated with three isolates of P. sojae, which differed in virulence on 6 to 10 Rps genes, individually or in a 1:1:1 mixture. Inoculum containing the 1:1:1 mixture of isolates was virulent on 13 Rps genes. The mixed-inoculum method was used to screen 1,019 soybean accessions in a blind assay for novel sources of resistance. In all, 17% of Glycine max accessions and 11% of G. soja accessions were resistant (≀30% dead plants), suggesting that these accessions may carry a novel Rps gene or genes. Advantages of combining isolates into a single source of inoculum include reduced cost, ability to screen soybean germplasm with inoculum virulent on all known Rps genes, and ease of identifying novel sources of resistance. This study is a precursor to identifying novel sources of resistance to P. sojae in soybean using RXLR effectors

    Generation and Characterization of Functional Human Hypothalamic Neurons.

    Get PDF
    Neurons in the hypothalamus orchestrate homeostatic physiological processes and behaviors essential for life. Defects in the function of hypothalamic neurons cause a spectrum of human diseases, including obesity, infertility, growth defects, sleep disorders, social disorders, and stress disorders. These diseases have been studied in animal models such as mice, but the rarity and relative inaccessibility of mouse hypothalamic neurons and species-specific differences between mice and humans highlight the need for human cellular models of hypothalamic diseases. We and others have developed methods to differentiate human pluripotent stem cells (hPSCs) into hypothalamic neurons and related cell types, such as astrocytes. This protocol builds on published studies by providing detailed step-by-step instructions for neuronal differentiation, quality control, long-term neuronal maintenance, and the functional interrogation of hypothalamic cells by calcium imaging. Together, these protocols should enable any group with appropriate facilities to generate and study human hypothalamic cells. © 2017 by John Wiley & Sons, Inc.The work described in this publication was supported by funds from the Wellcome Trust, the Medical Research Council (MR/P501967/1), and the Academy of Medical Sciences (SBF001\1016)

    Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis.

    Get PDF
    Psoriatic arthritis (PsA) is a debilitating immune-mediated inflammatory arthritis of unknown pathogenesis commonly affecting patients with skin psoriasis. Here we use complementary single-cell approaches to study leukocytes from PsA joints. Mass cytometry demonstrates a 3-fold expansion of memory CD8 T cells in the joints of PsA patients compared to peripheral blood. Meanwhile, droplet-based and plate-based single-cell RNA sequencing of paired T cell receptor alpha and beta chain sequences show pronounced CD8 T cell clonal expansions within the joints. Transcriptome analyses find these expanded synovial CD8 T cells to express cycling, activation, tissue-homing and tissue residency markers. T cell receptor sequence comparison between patients identifies clonal convergence. Finally, chemokine receptor CXCR3 is upregulated in the expanded synovial CD8 T cells, while two CXCR3 ligands, CXCL9 and CXCL10, are elevated in PsA synovial fluid. Our data thus provide a quantitative molecular insight into the cellular immune landscape of psoriatic arthritis

    Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis

    Get PDF
    Psoriatic arthritis (PsA) is a debilitating immune-mediated inflammatory arthritis of unknown pathogenesis commonly affecting patients with skin psoriasis. Here we use complementary single-cell approaches to study leukocytes from PsA joints. Mass cytometry demonstrates a 3-fold expansion of memory CD8 T cells in the joints of PsA patients compared to peripheral blood. Meanwhile, droplet-based and plate-based single-cell RNA sequencing of paired T cell receptor alpha and beta chain sequences show pronounced CD8 T cell clonal expansions within the joints. Transcriptome analyses find these expanded synovial CD8 T cells to express cycling, activation, tissue-homing and tissue residency markers. T cell receptor sequence comparison between patients identifies clonal convergence. Finally, chemokine receptor CXCR3 is upregulated in the expanded synovial CD8 T cells, while two CXCR3 ligands, CXCL9 and CXCL10, are elevated in PsA synovial fluid. Our data thus provide a quantitative molecular insight into the cellular immune landscape of psoriatic arthritis

    The effectiveness of online platforms after the pandemic : will face-to-face classes affect students’ perception of their Behavioural Intention (BIU) to use online platforms?

    Get PDF
    The purpose of this study is to investigate students’ intention to continue using online learning platforms during face-to-face traditional classes in a way that is parallel to their usage during online virtual classes (during the pandemic). This investigation of students’ intention is based on a conceptual model that uses newly used external factors in addition to the technology acceptance model (TAM) contrasts; hence, it takes into consideration users’ satisfaction, the external factor of information richness (IR) and the quality of the educational system and information disseminated. The participants were 768 university students who have experienced the teaching environments of both traditional face-to-face classes and online classes during the pandemic. A structural equation modelling (SEM) test was conducted to analyse the independent variables, including the users’ situation awareness (SA), perceived ease of use, perceived usefulness, satisfaction, IR, education system quality and information quality. An online questionnaire was used to explore students’ perceptions of their intention to use online platforms accessibly in a face-to-face learning environment. The results showed that (a) students prefer online platforms that have a higher level of content richness, to be able to implement the three dimensions of users’ situation awareness (perception, comprehension and projection); (b) there were significant effects of TAM constructs on students’ satisfaction and acceptance; (c) students are in favour of using a learning platform that is characterised by a high level of educational system quality and information quality and (d) students with a higher level of satisfaction have a more positive attitude in their willingness to use the online learning system

    The Genomic Signature of Crop-Wild Introgression in Maize

    Get PDF
    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes were particularly resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly informing our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies

    The mouse C9ORF72 ortholog is enriched in neurons known to degenerate in ALS and FTD.

    Get PDF
    Using transgenic mice harboring a targeted LacZ insertion, we studied the expression pattern of the C9ORF72 mouse ortholog (3110043O21Rik). Unlike most genes that are mutated in amyotrophic lateral sclerosis (ALS), which are ubiquitously expressed, the C9ORF72 ortholog was most highly transcribed in the neuronal populations that are sensitive to degeneration in ALS and frontotemporal dementia. Thus, our results provide a potential explanation for the cell type specificity of neuronal degeneration caused by C9ORF72 mutations

    Combined use of gliadins and SSRs to analyse the genetic variability of the Spanish collection of cultivated diploid wheat (Triticum monococcum L. ssp. monococcum)

    Get PDF
    This work studied the combined use of gliadins and SSRs to analyse inter- and intra-accession variability of the Spanish collection of cultivated einkorn (Triticum monococcum L. ssp. monococcum) maintained at the CRF-INIA. In general, gliadin loci presented higher discrimination power than SSRs, reflecting the high variability of the gliadins. The loci on chromosome 6A were the most polymorphic with similar PIC values for both marker systems, showing that these markers are very useful for genetic variability studies in wheat. The gliadin results indicated that the Spanish einkorn collection possessed high genetic diversity, being the differentiation large between varieties and small within them. Some associations between gliadin alleles and geographical and agro-morphological data were found. Agro-morphological relations were also observed in the clusters of the SSRs dendrogram. A high concordance was found between gliadins and SSRs for genotype identification. In addition, both systems provide complementary information to resolve the different cases of intra-accession variability not detected at the agro-morphological level, and to identify separately all the genotypes analysed. The combined use of both genetic markers is an excellent tool for genetic resource evaluation in addition to agro-morphological evaluation

    B Cell: T Cell Interactions Occur within Hepatic Granulomas during Experimental Visceral Leishmaniasis

    Get PDF
    Hepatic resistance to Leishmania donovani infection in mice is associated with the development of granulomas, in which a variety of lymphoid and non-lymphoid populations accumulate. Although previous studies have identified B cells in hepatic granulomas and functional studies in B cell-deficient mice have suggested a role for B cells in the control of experimental visceral leishmaniasis, little is known about the behaviour of B cells in the granuloma microenvironment. Here, we first compared the hepatic B cell population in infected mice, where ≈60% of B cells are located within granulomas, with that of naïve mice. In infected mice, there was a small increase in mIgMlomIgD+ mature B2 cells, but no enrichment of B cells with regulatory phenotype or function compared to the naïve hepatic B cell population, as assessed by CD1d and CD5 expression and by IL-10 production. Using 2-photon microscopy to quantify the entire intra-granuloma B cell population, in conjunction with the adoptive transfer of polyclonal and HEL-specific BCR-transgenic B cells isolated from L. donovani-infected mice, we demonstrated that B cells accumulate in granulomas over time in an antigen-independent manner. Intra-vital dynamic imaging was used to demonstrate that within the polyclonal B cell population obtained from L. donovani-infected mice, the frequency of B cells that made multiple long contacts with endogenous T cells was greater than that observed using HEL-specific B cells obtained from the same inflammatory environment. These data indicate, therefore, that a subset of this polyclonal B cell population is capable of making cognate interactions with T cells within this unique environment, and provide the first insights into the dynamics of B cells within an inflammatory site
    • 

    corecore