722 research outputs found

    Analysis of Friction Stir Processed Surface Quality of AA2098 Aluminum Alloy for Aeronautical Applications

    Get PDF
    FSP is a relatively new technique that changes the microstructure on the surface of the material to improve mechanical properties in the desired zone. This study aimed to investigate the surface quality of AA2098 sheets after being subjected to friction stir processing under different conditions of feed rate and rotational speed. A DoE analysis was developed with two factors, feed rate and rotational speed, and three different levels of 75, 100, 125 mm/min and 1000, 1250, 1500 rpm respectively, in order to assess the processed surface quality. The Sa parameter was used to represent the surface quality in different zones of the process, near entrance tool, middle and near exit tool, and ANOVA analysis was conducted. The results indicated that only the position and feed rate have a statistical influence on surface roughness. Additionally, the surface quality is strongly affected by the position relative to the entrance of the tool and the side (retreating or advancing sides). The roughness was found to be significantly lower on the advancing side rather than on the retreating side

    PINK1 homozygous W437X mutation in a patient with apparent dominant transmission of parkinsonism.

    Get PDF
    We analyzed the PINK1 gene in 58 patients with early-onset Parkinsonism and detected the homozygous mutation W437X in 1 patient. The clinical phenotype was characterized by early onset (22 years of age), good re- sponse to levodopa, early fluctuations and dyskinesias, and psychiatric symptoms. The mother, heterozygote for W437X mutation, was affected by Parkinson’s disease and 3 further relatives were reported affected, according to an autosomal dominant transmission

    Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions

    Get PDF
    A novel particle shifting technique (PST) for meshless numerical methods is presented. The proposed methodology uses an implicit iterative particle shifting (IIPS) technique aiming to reduce the spatial particle’ anisotropy, which is associated with the discretization error in meshless numerical schemes based on kernel basis functions. The algorithm controls the particle spatial distribution through an implicit minimization problem, related to the particle concentration gradient and therefore, to the particles’ anisotropy. This results in accurate particle distributions, to demonstrate the effectiveness of the proposed method, the IIPS algorithm is tested within a smoothed particle hydrodynamics (SPH) framework, with static and kinematic cases, by examining the particle distributions and the corresponding spatial accuracy. Further, the computational cost of the proposed methodology is reported and it is shown that it introduces minimal overhead. Moreover, the simulations of the Taylor–Green vortex (TGV), employing a weakly-compressible SPH Navier–Stokes solver, confirmed the superior accuracy of the IIPS in comparison to existing explicit shifting approaches, in simulating internal flows

    IMAGE: A New Tool for the Prediction of Transcription Factor Binding Sites

    Get PDF
    IMAGE is an application tool, based on the vector quantization method, aiding the discovery of nucleotidic sequences corresponding to Transcription Factor binding sites. Starting from the knowledge of regulation regions of a number of co-expressed genes, the software is able to predict the occurrence of specific motifs of different lengths (starting from 6 base pairs) with a defined number of punctual mutations

    Introduction

    Get PDF
    This chapter provides an overview of the book theme, motivating the need for high-performance and time-predictable embedded computing. It describes the challenges introduced by the need for time-predictability on the one hand, and high-performance on the other, discussing on a high level how these contradictory requirements can be simultaneously supported

    Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz

    Get PDF
    Observations of supernova remnants (SNRs) are a powerful tool for investigating the later stages of stellar evolution, the properties of the ambient interstellar medium, and the physics of particle acceleration and shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra high-energies has been provided, constraining their contributions to the production of Galactic cosmic rays. Although radio emission is the most common identifier of SNRs and a prime probe for refining models, high-resolution images at frequencies above 5 GHz are surprisingly lacking, even for bright and well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical Validation and Early Science Program with the 64-m single-dish Sardinia Radio Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz of the IC443 and W44 complexes coupled with spatially-resolved spectra in the 1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling and resulting in accurate continuum flux density measurements. The integrated flux densities associated with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4 Jy. Spectral index maps provide evidence of a wide physical parameter scatter among different SNR regions: a flat spectrum is observed from the brightest SNR regions at the shock, while steeper spectral indices (up to 0.7) are observed in fainter cooling regions, disentangling in this way different populations and spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201

    Synthesis and Evaluation of Cytostatic and Antiviral Activities of 3′ and 4′-Avarone Derivatives

    Get PDF
    A series of 3′ and 4′-substituted avarone derivatives were synthesized and tested in culture systems as antitumour and antiviral agents in comparison to avarol and avarone. 3′-alkylamino derivatives showed potent cytostatic activities against murine L1210 and human B (Raji) and T (C8166, H9) lymphoblast cells (ID50 range 1.7–3.7 μm). Avarol and avarone were six times less active. While none of the derivatives showed anti-human immunodeficiency virus (HIV) activity superior to that of the parent compounds, most of them, avarol and avarone included, were potent and selective inhibitors of poliovirus multiplication

    Reproductive aspects of the velvet belly lantern shark Etmopterus spinax (Condrichthyes: Etmopteridae), from the central western Mediterranean sea. Notes on gametogenesis and oviducal gland microstructure.

    Get PDF
    In this paper, the reproductive biology of the velvet belly lanternshark Etmopterus spinax was analyzed in Sardinian waters (central western Mediterranean). This species was sexually dimorphic with females growing to a larger size than males. Marked sexual dimorphism in size was also observed along the vertical gradient. Histological analysis of gonads was very useful in assigning macroscopical maturity stages. The investigation on the microstructure of oviducal gland (OG) highlighted four morphofunctional zones with mucous and/or proteic secretions according to the zone and to their specific functions and development. Sperm in the OG was found for the first time in E. spinax. The localization of sperm storage tubules deeper in OG suggested long-term sperm storage, which is in agreement with the long reproductive cycle described. This species matured late, specifically at 80.7% and 79% at the maximum observed size for females and males respectively. Mature specimens were found throughout the year with pregnant females observed in winter and autumn. A low fecundity was observed with a mean ovarian fecundity of 16.5 mature follicles

    The Coaxial L-P Cryogenic Receiver of the Sardinia Radio Telescope

    Get PDF
    The design and characterization of the coaxial dual-band L-P radio astronomical receiver for the prime focus of the Sardinia radio telescope are presented. The main feature of this receiver is to allow simultaneous radio astronomical observations in the P (305-410 MHz) and L (1.3-1.8 GHz) frequency bands. This functionality, which has been requested by the Pulsar research group at the National Institute for Astrophysics to estimate, among the others, the ionospheric dispersion in Pulsar observation, is currently missing in any other radio astronomical facility throughout the world. Also, single band operation is ensured by the proposed design both in linear and circular polarization, making this L-P receiver an ideal instrument for a wide range of radio astronomical and space applications. Some components of the receiver chain have been housed inside a cryostat and refrigerated at 20 K to reduce the noise temperature, resulting in a good performance compared to the receivers of other large radio telescopes. Several challenging issues have been faced in the design, mainly due to the large dimension and weight of the overall structure to be mounted in the prime focus position. Moreover, the design of the cryostat was constrained by the limited space available in the direction of the optical axis inside the focal cabin of the radio telescope, requiring a compact and light realization of the components of the receiver chain. This called for a home-made design of several devices, requiring a strong collaborative effort by researchers, engineers, and astronomers
    corecore