
Preface

Nowadays, the prevalence of electronic and computing systems in our lives is
so ubiquitous that it would not be far-fetched to state that we live in a cyber-
physical world dominated by computer systems. Examples include pacemak-
ers implanted within the human body to regulate and monitor heartbeats, cars
and airplanes transporting us, smart grids, and traffic management.

All these systems demand more and more computational performance to
process large amounts of data from multiple data sources, and some of them
with guaranteed processing response times; in other words, systems required
to deliver their results within pre-defined (and sometimes extremely short)
time bounds. This timing aspect is vital for systems like planes, cars, business
monitoring, e-trading, etc. Examples can be found in intelligent transportation
systems for fuel consumption reduction in cities or railways, or autonomous
driving of vehicles. All these systems require processing and actuation based
on large amounts of data coming from real-time sensor information.

As a result, the computer electronic devices which these systems depend
on are constantly required to become more and more powerful and reli-
able, while remaining affordable. In order to cope with such performance
requirements, chip designers have recently started producing chips containing
multiple processing units, the so-called multi-core processors, effectively
integrating multiple computers within a single chip, and more recently the
many-core processors, with dozens or hundreds of cores, interconnected with
complex networks on chip. This radical shift in the chip design paved the
way for parallel computing: rather than processing the data sequentially, the
cooperation of multiple processing elements within the same chip allows
systems to be executed concurrently, in parallel.

Unfortunately, the parallelization of the computing activities brought up
many challenges, because it affects the timing behavior of the systems as well
as the entire way people think and design computers: from the design of the
hardware architecture, through the operating system up to the conceptualiza-
tion of the end-user application. Therefore, although many-core processors
are promising candidates to improve the responsiveness of these systems,

xiii

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e...

https://core.ac.uk/display/389869949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


xiv Preface

the interactions that the different computing elements may have within the
chip can seriously affect the performance opportunities brought by parallel
execution. Moreover, providing timing guarantees becomes harder, because
the timing behavior of the system running within a many-core processor
depends on interactions that are most of the time not known by the system
designer. This makes system analysts struggle in trying to provide timing
guarantees for such platforms. Finally, most of the optimization mechanisms
buried deep inside the chip are geared only to increase performance and
execution speed rather than providing predictable time behavior.

These challenges need to be addressed by introducing predictability in
the vertical stack from high-level programming models to operating sys-
tems, together with new offline analysis techniques. This book covers the
main techniques to enable performance and predictability of embedded
applications. The book starts with an overview of some of the current many-
core embedded platforms, and then addresses how to support predictability
and performance in different aspects of computation: a predictable parallel
programming model, the mapping and scheduling of real-time parallel com-
putation, the timing analysis of parallel code, as well as the techniques to
support predictability in parallel runtimes and operating systems.

The work reflected in this book was done in the scope of the European
project P-SOCRATES, funded under the FP7 framework program of the
European Commission. The project website (www.p-socrates.eu), provides
further detailed information on the techniques presented here. Moreover, a
reference implementation of the methodologies and tools was released as the
UpScale Software Development Kit (http://www.upscale-sdk.com).

Luı́s Miguel Pinho
Eduardo Quiñones

Marko Bertogna
Andrea Marongiu

Vincent Nélis
Paolo Gai

Juan Sancho

February 2018


