13 research outputs found

    Utility of T2-weighted MRI texture analysis in assessment of peripheral zone prostate cancer aggressiveness: a single-arm, multicenter study

    No full text
    T2-weighted (T2W) MRI provides high spatial resolution and tissue-specific contrast, but it is predominantly used for qualitative evaluation of prostate anatomy and anomalies. This retrospective multicenter study evaluated the potential of T2W image-derived textural features for quantitative assessment of peripheral zone prostate cancer (PCa) aggressiveness. A standardized preoperative multiparametric MRI was performed on 87 PCa patients across 6 institutions. T2W intensity and apparent diffusion coefficient (ADC) histogram, and T2W textural features were computed from tumor volumes annotated based on whole-mount histology. Spearman correlations were used to evaluate association between textural features and PCa grade groups (i.e. 1–5). Feature utility in differentiating and classifying low-(grade group 1) vs. intermediate/high-(grade group ≥ 2) aggressive cancers was evaluated using Mann–Whitney U-tests, and a support vector machine classifier employing “hold-one-institution-out” cross-validation scheme, respectively. Textural features indicating image homogeneity and disorder/complexity correlated significantly (p < 0.05) with PCa grade groups. In the intermediate/high-aggressive cancers, textural homogeneity and disorder/complexity were significantly lower and higher, respectively, compared to the low-aggressive cancers. The mean classification accuracy across the centers was highest for the combined ADC and T2W intensity-textural features (84%) compared to ADC histogram (75%), T2W histogram (72%), T2W textural (72%) features alone or T2W histogram and texture (77%), T2W and ADC histogram (79%) combined. Texture analysis of T2W images provides quantitative information or features that are associated with peripheral zone PCa aggressiveness and can augment their classification

    Optical simulation of monolithic scintillator detectors using GATE/GEANT4

    No full text
    Much research is being conducted on position-sensitive scintillation detectors for medical imaging, particularly for emission tomography. Monte Carlo simulations play an essential role in many of these research activities. As the scintillation process, the transport of scintillation photons through the crystal(s), and the conversion of these photons into electronic signals each have a major influence on the detector performance; all of these processes may need to be incorporated in the model to obtain accurate results. In this work the optical and scintillation models of the GEANT4 simulation toolkit are validated by comparing simulations and measurements on monolithic scintillator detectors for high-resolution positron emission tomography (PET). We have furthermore made the GEANT4 optical models available within the user-friendly GATE simulation platform (as of version 3.0). It is shown how the necessary optical input parameters can be determined with sufficient accuracy. The results show that the optical physics models of GATE/GEANT4 enable accurate prediction of the spatial and energy resolution of monolithic scintillator PET detectors.RRR/Radiation, Radionuclides and ReactorsApplied Science

    The radiological interpretation of possible microbleeds after moderate or severe traumatic brain injury: a longitudinal study

    Get PDF
    Introduction: In order to augment the certainty of the radiological interpretation of “possible microbleeds” after traumatic brain injury (TBI), we assessed their longitudinal evolution on 3-T SWI in patients with moderate/severe TBI. Methods: Standardized 3-T SWI and T1-weighted imaging were obtained 3 and 26 weeks after TBI in 31 patients. Their microbleeds were computer-aided detected and classified by a neuroradiologist as no, possible, or definite at baseline and follow-up, separately (single-scan evaluation). Thereafter, the classifications were re-evaluated after comparison between the time-points (post-comparison evaluation). We selected the possible microbleeds at baseline at single-scan evaluation and recorded their post-comparison classification at follow-up. Results: Of the 1038 microbleeds at baseline, 173 were possible microbleeds. Of these, 53.8% corresponded to no microbleed at follow-up. At follow-up, 30.6% were possible and 15.6% were definite. Of the 120 differences between baseline and follow-up, 10% showed evidence of a pathophysiological change over time. Proximity to extra-axial injury and proximity to definite microbleeds were independently predictive of becoming a definite microbleed at follow-up. The reclassification level differed between anatomical locations. Conclusions: Our findings support disregarding possible microbleeds in the absence of clinical consequences. In selected cases, however, a follow-up SWI-scan could be considered to exclude evolution into a definite microbleed

    Magnetic resonance imaging at ultra-high magnetic field strength: An in vivo assessment of number, size and distribution of pelvic lymph nodes.

    No full text
    ObjectiveThe definition of an in vivo nodal anatomical baseline is crucial for validation of representative lymph node dissections and accompanying pathology reports of pelvic cancers, as well as for assessing a potential therapeutic effect of extended lymph node dissections. Therefore the number, size and distribution of lymph nodes in the pelvis were assessed with high-resolution, large field-of-view, 7 Tesla (T) magnetic resonance imaging (MRI) with frequency-selective excitation.Materials and methodsWe used 7 T MRI for homogeneous pelvic imaging in 11 young healthy volunteers. Frequency-selective imaging of water and lipids was performed to detect nodal structures in the pelvis. Number and size of detected nodes was measured and size distribution per region was assessed. An average volunteer-normalized nodal size distribution was determined.ResultsIn total, 564 lymph nodes were detected in six pelvic regions. Mean number was 51.3 with a wide range of 19-91 lymph nodes per volunteer. Mean diameter was 2.3 mm with a range of 1 to 7 mm. 69% Was 2 mm or smaller. The overall size distribution was very similar to the average volunteer-normalized nodal size distribution.ConclusionsThe amount of in vivo visible lymph nodes varies largely between subjects, whereas the normalized size distribution of nodes does not. The presence of many small lymph nodes (≤2mm) renders representative or complete removal of pelvic lymph nodes to be very difficult. 7T MRI may shift the in vivo detection limits of lymph node metastases in the future

    Model of the point spread function of monolithic scintillator PET detectors for perpendicular incidence.

    No full text
    Item does not contain fulltextPURPOSE: Previously, we demonstrated the potential of positron emission tomography detectors consisting of monolithic scintillation crystals read out by arrays of solid-state light sensors. We reported detector spatial resolutions of 1.1-1.3 mm full width at half maximum (FWHM) with no degradation for angles of incidence up to 30 degrees, energy resolutions of approximately 11% FWHM, and timing resolutions of approximately 2 ns FWHM, using monolithic LYSO:Ce3+ crystals coupled to avalanche photodiode (APD) arrays. Here we develop, validate, and demonstrate a simple model of the detector point spread function (PSF) of such monolithic scintillator detectors. METHODS: A PSF model was developed that essentially consists of two convolved components, one accounting for the spatial distribution of the energy deposited by annihilation photons within the crystal, and the other for the influences of statistical signal fluctuations and electronic noise. The model was validated through comparison with spatial resolution measurements on a detector consisting of an LYSO:Ce3+ crystal read out by two APD arrays. RESULTS: The model is shown to describe the measured detector spatial response well at the noise levels found in the experiments. In addition, it is demonstrated how the model can be used to correct the measured spatial response for the influence of the finite diameter of the annihilation photon beam used in the experiments, thus obtaining an estimate of the intrinsic detector PSF. CONCLUSIONS: Despite its simplicity, the proposed model is an accurate tool for analyzing the detector PSF of monolithic scintillator detectors and can be used to estimate the intrinsic detector PSF from the measured one.1 april 201

    A Single-Arm, Multicenter Validation Study of Prostate Cancer Localization and Aggressiveness With a Quantitative Multiparametric Magnetic Resonance Imaging Approach.

    No full text
    Objectives: The aims of this study were to assess the discriminative performance of quantitative multiparametric magnetic resonance imaging (mpMRI) between prostate cancer and noncancer tissues and between tumor grade groups (GGs) in a multicenter, single-vendor study, and to investigate to what extent site-specific differences affect variations in mpMRI parameters. Materials and Methods: Fifty patients with biopsy-proven prostate cancer from 5 institutions underwent a standardized preoperative mpMRI protocol. Based on the evaluation of whole-mount histopathology sections, regions of interest were placed on axial T2-weighed MRI scans in cancer and noncancer peripheral zone (PZ) and transition zone (TZ) tissue. Regions of interest were transferred to functional parameter maps, and quantitative parameters were extracted. Across-center variations in noncancer tissues, differences between tissues, and the relation to cancer grade groups were assessed using linear mixed-effects models and receiver operating characteristic analyses. Results: Variations in quantitative parameters were low across institutes (mean [maximum] proportion of total variance in PZ and TZ, 4% [14%] and 8% [46%], respectively). Cancer and noncancer tissues were best separated using the diffusion-weighted imaging-derived apparent diffusion coefficient, both in PZ and TZ (mean [95% confidence interval] areas under the receiver operating characteristic curve [AUCs]; 0.93 [0.89–0.96] and 0.86 [0.75–0.94]), followed by MR spectroscopic imaging and dynamic contrast-enhanced-derived parameters. Parameters from all imaging methods correlated significantly with tumor grade group in PZ tumors. In discriminating GG1 PZ tumors from higher GGs, the highest AUC was obtained with apparent diffusion coefficient (0.74 [0.57–0.90], P < 0.001). The best separation of GG1–2 from GG3–5 PZ tumors was with a logistic regression model of a combination of functional parameters (mean AUC, 0.89 [0.78–0.98]). Conclusions: Standardized data acquisition and postprocessing protocols in prostate mpMRI at 3 T produce equivalent quantitative results across patients from multiple institutions and achieve similar discrimination between cancer and noncancer tissues and cancer grade groups as in previously reported singlecenter studies

    Monolithic scintillator PET detectors with intrinsic depth-of-interaction correction

    No full text
    We developed positron emission tomography (PET) detectors based on monolithic scintillation crystals and position-sensitive light sensors. Intrinsic depth-of-interaction (DOI) correction is achieved by deriving the entry points of annihilation photons on the front surface of the crystal from the light sensor signals. Here we characterize the next generation of these detectors, consisting of a 20 mm thick rectangular or trapezoidal LYSO:Ce crystal read out on the front and the back (double-sided readout, DSR) by Hamamatsu S8550SPL avalanche photodiode (APD) arrays optimized for DSR. The full width at half maximum (FWHM) of the detector point-spread function (PSF) obtained with a rectangular crystal at normal incidence equals ~1.05 mm at the detector centre, after correction for the ~0.9 mm diameter test beam of annihilation photons. Resolution losses of several tenths of a mm occur near the crystal edges. Furthermore, trapezoidal crystals perform almost equally well as rectangular ones, while improving system sensitivity. Due to the highly accurate DOI correction of all detectors, the spatial resolution remains essentially constant for angles of incidence of up to at least 30°. Energy resolutions of ~11% FWHM are measured, with a fraction of events of up to 75% in the full-energy peak. The coincidence timing resolution is estimated to be 2.8 ns FWHM. The good spatial, energy and timing resolutions, together with the excellent DOI correction and high detection efficiency of our detectors, are expected to facilitate high and uniform PET system resolution.RRR/Radiation, Radionuclides and ReactorsApplied Science
    corecore